Hostname: page-component-8448b6f56d-cfpbc Total loading time: 0 Render date: 2024-04-16T11:14:54.562Z Has data issue: false hasContentIssue false

Convective Overshooting: Physical Properties and Seismic Evidence

Published online by Cambridge University Press:  12 April 2016

J.-P. Zahn*
Affiliation:
Observatoire de Paris, Meudon, France

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We review briefly the different prescriptions which have been proposed to predict the extent of convective penetration (or overshoot) in stellar interiors, and we confront them with the results of numerical simulations and with helioseismic data. It appears that the penetrative motions are structured in plumes, and that thermal diffusion plays an important role in controlling the temperature stratification in the stable domain. The most recent high-resolution simulations suggest that these plumes are less space-filling than thought before, and that they are therefore less efficient in establishing an adiabatic temperature profile. This property is compatible with the solar profiles obtained through acoustic sounding.

Type
Part 1.1. Theoretical Aspects
Copyright
Copyright © Astronomical Society of the Pacific 2002

References

Brummel, N., Clune, T., & Toomre, J. 2001, ApJ, in pressGoogle Scholar
Canuto, V.M. 1997, ApJ, 482, 827 Google Scholar
Castellani, V., Gianiione, P., & Renzini, A. 1971, Ap&SS, 10, 340 Google Scholar
Christensen-Dalsgaard, J., Monteiro, M., & Thompson, M. 1995, MNRAS, 276, 283 Google Scholar
Cogan, B. 1975, ApJ, 201, 637 Google Scholar
Duvall, T.L. 1982, Nature, 300, 242 CrossRefGoogle Scholar
Freytag, B., Ludwig, H.-G., & Steffen, M. 1996, A&A, 313, 497 Google Scholar
Hurlburt, N.E., Toomre, J., & Massaguer, J.M. 1986, ApJ, 311, 563 Google Scholar
Hurlburt, N.E., Toomre, J., Massaguer, J.M., & Zahn, J.-R 1994, ApJ, 421, 245 Google Scholar
Kuhfuss, R. 1986, A&A, 160, 116 Google Scholar
Kupka, F. 1999, ApJ, 526, L45 Google Scholar
Latour, J., Toomre, J., & Zahn, J.-R 1981, ApJ, 248, 1081 Google Scholar
Maeder, A. 1975, A&A, 43, 61 Google Scholar
Massaguer, J.M., Latour, J., Toomre, J., & Zahn, J.-P. 1984, A&A, 140, 1 Google Scholar
Meynet, G. & Maeder, A. 2000, A&A, 361, 101 Google Scholar
Moore, D.R. & Weiss, N.O. 1973, J. Fluid Mech., 61, 553 CrossRefGoogle Scholar
Muthsam, H.J., Göb, W., Kupka, F., Liebich, W., & Zöchling, J. 1995, A&A, 293, 127 Google Scholar
Prather, M.J. & Demarque, P. 1974, ApJ, 193, 109 Google Scholar
Renzini, A. 1987, A&A, 188, 49 Google Scholar
Roxburgh, I.W. 1978, A&A, 65, 281 Google Scholar
Roxburgh, I.W. & Simmons, J. 1993, A&A, 277, 93 Google Scholar
Roxburgh, I.W. & Vorontsov, S.V. 1994, MNRAS, 268, 880 Google Scholar
Saslaw, W.C. & Schwarzschild, M. 1965, ApJ, 142, 1468 CrossRefGoogle Scholar
Schmitt, J., Rosner, R., & Bohn, H.U. 1984, ApJ, 282, 316 Google Scholar
Shaviv, G. & Salpeter, E.E. 1973, ApJ, 184, 191 Google Scholar
Singh, H.P., Roxburgh, I.W., & Chan, K.L. 1998, A&A, 340, 178 Google Scholar
Veronis, G. 1963, ApJ, 137, 641 Google Scholar
Xiong, D.R. 1985, A&A, 150, 133 Google Scholar
Zahn, J.-P. 1991, A&A, 252, 179 Google Scholar
Zahn, J.-P. 1992, A&A, 265, 115 Google Scholar
Zahn, J.-P., Toomre, J. & Latour, J. 1982, GAFD, 22, 159 Google Scholar