Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-15T04:57:35.181Z Has data issue: false hasContentIssue false

The Association of Flares to Cancelling Magnetic Features on the Sun

Published online by Cambridge University Press:  12 April 2016

Silvia H. B. Livi
Affiliation:
Universidade Federal do Rio Grande do Sul, 90 049 Porto Alegre RS, Brazil
Sara Martin
Affiliation:
Big Bear Solar Observatory, California Institute of Technology, Pasadena, CA 91125, U.S.A.
Haimin Wang
Affiliation:
Big Bear Solar Observatory, California Institute of Technology, Pasadena, CA 91125, U.S.A.
Guoxiang Ai
Affiliation:
Beijing Astronomical Observatory, Beijing, China

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Previous work relating flares to evolutionary changes of photospheric solar magnetic fields are reviewed and reinterpreted in the light of recent observations of cancelling magnetic fields. In line-of-sight magnetograms and H-alpha filtergrams from Big Bear Solar Observatory, we confirm the following 3 associations: (a) the occurrence of many flares in the vicinity of emerging magnetic flux regions (Rust, 1974), but only at locations where cancellation has been observed or inferred; (b) the occurrence of flares at sites where the magnetic flux is increasing on one side of a polarity inversion line and concurrently decreasing on the other (Martres et al, 1968; Ribes, 1969); and (c) the occurrence of flares at sites where cancellation is the only observed change in the magnetograms for at least several hours before a flare (Martin, Livi, and Wang, 1985). Because cancellation (or the localized decrease in the line-of-sight component of magnetic flux) is the only common factor in all of these circumstances, suggest that cancellation is the more general association that includes the other associations as special cases. We propose the hypothesis that cancellation is a necessary, evolutionary precondition for flares. We also confirm the observation of Martin, Livi, and Wang (1985) that the initial parts of flares occur in close proximity to cancellation sites but that during later phases, the flare emission can spread to other parts of the magnetic field that are weak, strong, or not cancelling.

Type
Research Article
Copyright
Copyright © Kluwer 1989

References

Dizer, M.: 1969, Solar Phys. 10, 416.CrossRefGoogle Scholar
Gaizauskas, V. and Švestka, Z.: 1987, Solar Phys. 114, 389.CrossRefGoogle Scholar
Harvey, J. H. and Harvey, K. L.: 1973, Solar Phys. 28, 61.Google Scholar
Livi, S. H. B., Wang, J., and Martin, S. F.: 1985, Australian J. Phys. 38, 855.CrossRefGoogle Scholar
Marsh, K.: 1978, Solar Phys. 59, 105.CrossRefGoogle Scholar
Martin, S. F.: 1980, Solar Phys. 68, 217.Google Scholar
Martin, S. F.: 1984, Keil, S. (ed.), Small-Scale Dynamic Processes in Quiet Stellar Atmospheres, p. 30.Google Scholar
Martin, S. F.: 1986, Coronal and Prominence Plasmas, NASA Conf. Pubi. 2442, p. 73.Google Scholar
Martin, S. F.: 1988, Solar Phys. 117, 243.Google Scholar
Martin, S. F., Livi, S. H. B., and Wang, J.: 1985, Australian J. Phys. 38, 929.Google Scholar
Martin, S. F., Dezsö, L., Antalova, A. Kučera, A., and Harvey, K. L.: 1983, Adv. Space Res. 2, 39.Google Scholar
Martin, S. F., Bentley, R. D., Schadee, A., Antalova, A., Kučera, A., Dezsö, L., Gesztelyi, L., Harvey, K. L., Jones, H., Livi, S. H. B., and Wang, J.: 1984, Adv. Space Res. 4, 61.Google Scholar
Martin, S. F., Livi, S. H. B., Wang, J. and Shi, Z.: 1985, Measurements of Vector Magnetic Fields, NASA Conf. Pubi. 2374, May 1984, Marshall Space Flight Center, Alabama, NASA, Washington, DC, p. 403.Google Scholar
Martres, M. J., Michard, R., and Soru-Iscovici, I.: 1966, Ann. Astrophys. 29, 249.Google Scholar
Martres, M. J., Michard, R., Soru-Iscovici, I., and Tsap, T.: 1968, in Kiepenheuer, K. O. (ed.), ‘Structure and Development of Solar Active Regions', IAU Symp. 35, 318.Google Scholar
Martres, M. J., Michard, R., Soru-Iscovici, I., and Tsap, T.: 1968b, Solar Phys. 5, 187.Google Scholar
Michard, R.: 1971, in Howard, R. F. (ed.), ‘Solar Magnetic Fields', IAU Symp. 43, 359.Google Scholar
Priest, E. R., Gaizauskas, V., Hagyard, M. J., Schmahl, E. J., and Webb, D. F.: 1986, Energetic Phenomena on the Sun, NASA Conf. Pubi. 2439, pp. 11 to 1-79.Google Scholar
Ribes, E.: 1969, Astron. Astrophys. 2, 316.Google Scholar
Rust, D. M.: 1972, Solar Phys. 25, 141.Google Scholar
Rust, D. M: 1974, Flare-Related Magnetic Field Dynamics, HAO Conference held in Boulder, Colorado, p. 243.Google Scholar
Severny, A. B.: 1958, Izv. Krymsk. Astrofiz. Obs. 20, 22.Google Scholar
Severny, A. B.: 1960, Izv. Krymsk. Astrofiz. Obs. 22, 12.Google Scholar
Smith, S. F. and Howard, R. F.: 1968, in Kiepenheuer, K. O. (ed.), ‘Structure and Development of Solar Active Regions', IAU Symp. 35, 33.Google Scholar
Smith, S. F. and Ramsey, H.: 1967, Solar Phys. 2, 158.Google Scholar
Tanaka, K.: 1975, Solar Phys. 47, 247.Google Scholar
Vorpahl, J.: 1973, Solar Phys. 28, 115.Google Scholar
Zirin, H.: 1988, Astrophysics of the Sun, Cambridge University Press, Cambridge, p. 343.Google Scholar
Zirin, H. and Lazareff, B.: 1975, Solar Phys. 41, 425.Google Scholar
Zirin, H. and Liggett, M. A.: 1987, Solar Phys. 113, 267.Google Scholar
Zwaan, C.: 1987, Ann. Rev. Astron. Astrophys. 25, 83.Google Scholar