Skip to main content Accessibility help
×
Home
Hostname: page-component-564cf476b6-mb7zs Total loading time: 0.21 Render date: 2021-06-22T02:28:15.780Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true }

Quality of Data Reported to a Smaller-Hospital Pilot Surveillance Program

Published online by Cambridge University Press:  02 January 2015

Noleen J. Bennett
Affiliation:
Victorian Hospital Acquired Infection Surveillance System, (VIC-NISS) Coordinating Centre, Melbourne, Australia
Ann L. Bull
Affiliation:
Victorian Hospital Acquired Infection Surveillance System, (VIC-NISS) Coordinating Centre, Melbourne, Australia
David R. Dunt
Affiliation:
School of Population Health, the University of Melbourne, Melbourne, Australia
Michael J. Richards
Affiliation:
Victorian Hospital Acquired Infection Surveillance System, (VIC-NISS) Coordinating Centre, Melbourne, Australia
Philip L. Russo
Affiliation:
Victorian Hospital Acquired Infection Surveillance System, (VIC-NISS) Coordinating Centre, Melbourne, Australia
Denis W. Spelman
Affiliation:
Microbiology and Infectious Diseases Unit, Alfred Hospital, Melbourne, Australia
Corresponding
E-mail address:

Abstract

This data quality study assessed the accuracy of data collected as part of a pilot smaller-hospital surveillance program for methicillin-resistant Staphylococcus aureus (MRSA) infection and bloodstream infection (BSI). For reported MRSA infection, estimated values were as follows: sensitivity, 40%; specificity, 99.9%; and positive predictive value, 33.3%. For reported BSI, estimated values were as follows: sensitivity, 42.9%; specificity, 99.8%; and positive predictive value, 37.5%.

Type
Concise Communication
Copyright
Copyright © The Society for Healthcare Epidemiology of America 2007

Access options

Get access to the full version of this content by using one of the access options below.

References

1.Centers for Disease Control and Prevention National Nosocomial Infection Surveillance System. Nosocomial infection rates for inter-hospital comparison: limitations and possible solutions. Infect Control Hosp Epidemiol 1991;12:609621.CrossRefGoogle Scholar
2.Mulholland, SG, Creed, J, Dierauf, LA, Brumn, IN, Blackmore, WS. Analysis and significance of nosocomial infection rates. Ann Surg 1974;180:827830.CrossRefGoogle ScholarPubMed
3.Colignon, P, Looke, D, Ferguson, J, McLaws, M-L, Olsen, D. Surveillance definitions for multi-resistant organisms (MROs). Australian Infect Control J 2002;7.Google Scholar
4.Gaynes, RP, Horan, TC. Surveillance of nosocomial infections. In: Mayhall, G, ed. Hospital Epidemiology and Infection Control. Baltimore: Williams & Wilkins, 1996:12851317.Google Scholar
5.Larson, E, Horan, T, Cooper, B, Kotilainen, HR, Landry, S, Terry, B. Study of the definition of nosocomial infections. Am J Infect Control 1991;19:259267.CrossRefGoogle ScholarPubMed
6.Ehrenkranz, NJ, Schulz, LM, Richter, EI. Recorded criteria as a gold standard for sensitivity and specificity estimates of surveillance of nosocomial infection: a novel method to measure job performance. Infect Control Hosp Epidemiol 1995;16:697702.CrossRefGoogle ScholarPubMed
7.Emori, TG, Edwards, JR, Culver, DH, et al.Accuracy of reporting nosocomial infections in intensive care unit patients to the National Nosocomial Infections Surveillance system: a pilot study. Infect Control Hosp Epidemiol 1998;19:308316.CrossRefGoogle Scholar
8.Perl, TM. Surveillance, reporting and the use of computers. In: Wenzel, RP, ed. Prevention and Control of Nosocomial Infections. 3rd ed. Baltimore: Williams & Wilkins, 1997:25161.Google Scholar
9.Gastmeier, P, Brauer, H, Hauer, T, Schumacher, M, Daschner, F, Ruden, H. How many nosocomial infections are missed if identification is restricted to patients with either microbiology reports or antibiotic administration? Infect Control Hosp Epidemiol 1999;20:124127.CrossRefGoogle Scholar
10.Haley, RW, Schaberg, DR, McClish, DK, et al.The accuracy of retrospective chart review in measuring nosocomial infection rates: results of validation studies in pilot hospitals. Am J Epidemiol 1980;111:516533.CrossRefGoogle ScholarPubMed
11.Glenister, HM, Taylor, LJ, Bartlett, CLR, Cooke, EM, Sedgwick, JA, Mackintosh, CA. An evaluation of surveillance methods for detecting infections in hospital inpatients. J Hosp Infect 1993;23:229242.CrossRefGoogle ScholarPubMed
12.Gastmeier, P, Kampf, G, Hauer, T, et al.Experience with two validation methods in a prevalence survey on nosocomial infections. Infect Control Hosp Epidemiol 1998;19:668673.CrossRefGoogle Scholar
13.Cardo, DM, Falk, PS, Mayhall, CG. Validation of surgical wound surveillance. Infect Control Hosp Epidemiol 1993;14:211215.CrossRefGoogle ScholarPubMed
14.Broderick, A, Mori, M, Nettleman, MD, Streed, SA, Wenzel, RP. Nosocomial infections: validation of surveillance and computer modelling to identify patients at risk. Am J Epidemiol 1990;131:734742.CrossRefGoogle ScholarPubMed
15.Laxson, LB, Blaser, MJ, Parkhurst, SM. Surveillance for the detection of nosocomial infections and the potential for nosocomial outbreaks. 1. Microbiology culture surveillance is an effective method of detecting nosocomial infection. Am J Infect Control 1984;12:318324.CrossRefGoogle Scholar
16.The Quality Indicator Study Group. An approach to the evaluation of quality indicators of the outcome of care in hospitalized patients, with a focus on nosocomial infection indicators. Am J Infect Control 1995;23:215222.CrossRefGoogle ScholarPubMed
17.Larson, E, Oram, LF, Hedrick, E. Nosocomial infection rates as an indicator of quality. Med Care 1988;26:676685.CrossRefGoogle Scholar
18.Freeman, J, McGowan, JE JrMethodological issues in hospital epidemiology. I. Rates, case finding and interpretations. Rev Infect Dis 1981;3:658667.CrossRefGoogle Scholar
2
Cited by

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Quality of Data Reported to a Smaller-Hospital Pilot Surveillance Program
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Quality of Data Reported to a Smaller-Hospital Pilot Surveillance Program
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Quality of Data Reported to a Smaller-Hospital Pilot Surveillance Program
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *