Skip to main content Accessibility help
×
Home
Hostname: page-component-79b67bcb76-jn9wc Total loading time: 0.384 Render date: 2021-05-15T18:58:17.666Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true }

Antimicrobial-resistant pathogens associated with adult healthcare-associated infections: Summary of data reported to the National Healthcare Safety Network, 2015–2017

Published online by Cambridge University Press:  26 November 2019

Lindsey M. Weiner-Lastinger
Affiliation:
Division of Healthcare Quality Promotion, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
Sheila Abner
Affiliation:
Division of Healthcare Quality Promotion, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
Jonathan R. Edwards
Affiliation:
Division of Healthcare Quality Promotion, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
Alexander J. Kallen
Affiliation:
Division of Healthcare Quality Promotion, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
Maria Karlsson
Affiliation:
Division of Healthcare Quality Promotion, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
Shelley S. Magill
Affiliation:
Division of Healthcare Quality Promotion, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
Daniel Pollock
Affiliation:
Division of Healthcare Quality Promotion, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
Isaac See
Affiliation:
Division of Healthcare Quality Promotion, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
Minn M. Soe
Affiliation:
Division of Healthcare Quality Promotion, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
Maroya S. Walters
Affiliation:
Division of Healthcare Quality Promotion, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
Margaret A. Dudeck
Affiliation:
Division of Healthcare Quality Promotion, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
Corresponding
E-mail address:

Abstract

Objective:

Describe common pathogens and antimicrobial resistance patterns for healthcare-associated infections (HAIs) that occurred during 2015–2017 and were reported to the Centers for Disease Control and Prevention’s (CDC’s) National Healthcare Safety Network (NHSN).

Methods:

Data from central line-associated bloodstream infections (CLABSIs), catheter-associated urinary tract infections (CAUTIs), ventilator-associated events (VAEs), and surgical site infections (SSIs) were reported from acute-care hospitals, long-term acute-care hospitals, and inpatient rehabilitation facilities. This analysis included device-associated HAIs reported from adult location types, and SSIs among patients ≥18 years old. Percentages of pathogens with nonsusceptibility (%NS) to selected antimicrobials were calculated for each HAI type, location type, surgical category, and surgical wound closure technique.

Results:

Overall, 5,626 facilities performed adult HAI surveillance during this period, most of which were general acute-care hospitals with <200 beds. Escherichia coli (18%), Staphylococcus aureus (12%), and Klebsiella spp (9%) were the 3 most frequently reported pathogens. Pathogens varied by HAI and location type, with oncology units having a distinct pathogen distribution compared to other settings. The %NS for most pathogens was significantly higher among device-associated HAIs than SSIs. In addition, pathogens from long-term acute-care hospitals had a significantly higher %NS than those from general hospital wards.

Conclusions:

This report provides an updated national summary of pathogen distributions and antimicrobial resistance among select HAIs and pathogens, stratified by several factors. These data underscore the importance of tracking antimicrobial resistance, particularly in vulnerable populations such as long-term acute-care hospitals and intensive care units.

Type
Original Article
Copyright
© 2019 by The Society for Healthcare Epidemiology of America. All rights reserved. 

Access options

Get access to the full version of this content by using one of the access options below.

References

Hidron, AI, Edwards, JR, Patel, J, et al. Antimicrobial-resistant pathogens associated with healthcare-associated infections: annual summary of data reported to the National Healthcare Safety Network at the Centers for Disease Control and Prevention, 2006–2007. Infect Control Hosp Epidemiol 2008;29:9961011. Erratum in Infect Control Hosp Epidemiol 2009;30:107.CrossRefGoogle Scholar
Sievert, DM, Ricks, P, Edwards, JR, et al. Antimicrobial-resistant pathogens associated with healthcare-associated infections: summary of data reported to the National Healthcare Safety Network at the Centers for Disease Control and Prevention, 2009–2010. Infect Control Hosp Epidemiol 2013;34:114.CrossRefGoogle Scholar
Weiner, LM, Webb, AK, Limbago, B, et al. Antimicrobial-resistant pathogens associated with healthcare-associated infections: summary of data reported to the National Healthcare Safety Network at the Centers for Disease Control and Prevention, 2011–2014. Infect Control Hosp Epidemiol 2016;37:12881301.CrossRefGoogle Scholar
Acute Inpatient PPS. Centers for Medicare and Medicaid Services website. https://www.cms.gov/Medicare/Medicare-Fee-for-Service-Payment/AcuteInpatientPPS/index.html. Updated 2019. Accessed June 3, 2019.Google Scholar
Long-term Care Hospital (LTCH) Quality Reporting Program (QRP). Centers for Medicare and Medicaid Services website. https://www.cms.gov/Medicare/Quality-Initiatives-Patient-Assessment-Instruments/LTCH-Quality-Reporting/index.html. Updated 2019. Accessed June 3, 2019.Google Scholar
Inpatient Rehabilitation Facilities (IRF) Quality Reporting Program (QRP). Centers for Medicare and Medicaid Services website. https://www.cms.gov/Medicare/Quality-Initiatives-Patient-Assessment-Instruments/IRF-Quality-Reporting/index.html. Updated 2018. Accessed June 3, 2019.Google Scholar
Bloodstream infection event (central line-associated bloodstream infection and non-central line-associated bloodstream infection). Centers for Disease Control and Prevention (CDC) website. http://www.cdc.gov/nhsn/PDFs/pscManual/4PSC_CLABScurrent.pdf. Updated January 2019. Accessed June 3, 2019.Google Scholar
Urinary tract infection (catheter-associated urinary tract infection [CAUTI] and non-catheter-associated urinary tract infection [UTI]) and other urinary system infection [USI]) events. Centers for Disease Control and Prevention (CDC) website. http://www.cdc.gov/nhsn/PDFs/pscManual/7pscCAUTIcurrent.pdf. Updated January 2019. Accessed June 3, 2019.Google Scholar
Ventilator-associated event (VAE). Centers for Disease Control and Prevention (CDC) website. https://www.cdc.gov/nhsn/pdfs/pscmanual/10-vae_final.pdf. Updated January 2019. Accessed June 3, 2019.Google Scholar
Surgical site infection (SSI) event. Centers for Disease Control and Prevention (CDC) website. http://www.cdc.gov/nhsn/PDFs/pscManual/9pscSSIcurrent.pdf. Updated January 2019. Accessed June 3, 2019.Google Scholar
Hocevar, SN, Weiner, LM, Edwards, JR, Magill, SS. Pathogen distribution and selected resistance profiles of central line-associated bloodstream infection isolates reported to the National Healthcare Safety Network from pediatric and neonatal intensive care units, 2011–2013. In: Program and abstracts of the annual IDWeek Meeting; October 8–12, 2014; Philadelphia, PA. Abstract no. 45238.CrossRefGoogle Scholar
Lake, JG, Weiner, LM, Milstone, AM, Saiman, L, Magill, SS, See, I. Pathogen distribution and antimicrobial resistance among pediatric healthcare-associated infections reported to the National Healthcare Safety Network, 2011–2014. Infect Control Hosp Epidemiol 2017;39:111.CrossRefGoogle Scholar
Weiner-Lastinger, LM, Abner, S, Edwards, JR, et al. Antimicrobial-resistant pathogens associated with pediatric healthcare-associated infections: summary of data reported to the National Healthcare Safety Network, 2015–2017. Infect Control Hosp Epidemiol 2019. https://doi.org/10.1017/ice.2019.297.CrossRefGoogle Scholar
The 2015–2017 adult antimicrobial resistance report online supplement. Centers for Disease Control and Prevention (CDC) website. https://www.cdc.gov/nhsn/datastat/index.html. Updated September 2019. Accessed October 14, 2019.Google Scholar
Clinical and Laboratory Standards Institute (CLSI). Performance Standards for Antimicrobial Susceptibility Testing. 27th ed. Wayne, PA: CLSI; 2017: M100-S27.Google Scholar
Systematized Nomenclature of Medicine–Clinical Terms (SNOMED CT) Browser: United States edition. SNOMED International website. https://browser.ihtsdotools.org Updated 2019. Accessed June 4, 2019.Google Scholar
Tindall, BJ, Sutton, G, Garrity, GM. Enterobacter aerogenes Hormaeche and Edwards 1960 (Approved Lists 1980) and Klebsiella mobilis Bascomb et al. 1971 (Approved Lists 1980) share the same nomenclature type (ATCC 13048) on the approved lists and are homotypic synonyms, with consequences for the name Klebsiella mobilis Bascomb et al. 1971 (Approved Lists 1980). Int J Syst Evol Microbiol 2017;67:502504.CrossRefGoogle Scholar
Magiorakos, A-P, Srinivasan, A, Carey, RB, et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect 2012;18:268281.CrossRefGoogle ScholarPubMed
See, I, Freifeld, AG, Magill, SS. Causative organisms and associated antimicrobial resistance in healthcare-associated, central line-associated bloodstream infections from oncology settings, 2009–2012. Clin Infect Dis 2016;62:12031209.CrossRefGoogle ScholarPubMed
McKinnell, JA, Singh, RD, Miller, LG, et al. The SHIELD Orange County Project—multi drug-resistant organism (MDRO) prevalence in 21 nursing homes and long-term acute-care facilities in southern California. Clin Infect Dis 2019;ciz119:18.Google Scholar
Munoz-Price, LS, Stemer, A. Four years of surveillance cultures at a long-term acute-care hospital. Infect Control Hosp Epidemiol 2010;31:5963.CrossRefGoogle Scholar
Woodworth, KR, Walters, MS, Weiner, LM, et al. Vital signs: containment of novel multidrug-resistant organisms and resistance mechanisms—United States, 2006–2017. Morb Mortal Wkly Rep 2018;67:396401.CrossRefGoogle ScholarPubMed
Weiner, LM, Fridkin, SK, Aponte-Torres, Z, et al. Vital signs: preventing antibiotic-resistant infections in hospitals—United States, 2014. Morb Mortal Wkly Rep 2016;65:235241.CrossRefGoogle ScholarPubMed
Slayton, RB, Toth, D, Lee, BY, et al. Vital signs: estimated effects of a coordinated approach for action to reduce antibiotic-resistant infections in health care facilities—United States. Morb Mortal Wkly Rep 2015;64:826831.CrossRefGoogle ScholarPubMed
Campoccia, D, Montanaro, L, Arciola, CR. The significance of infection related to orthopedic devices and issues of antibiotic resistance. Biomaterials 2006;27:23312339.CrossRefGoogle ScholarPubMed
Owens, CD, Stoessel, K. Surgical site infections: epidemiology, microbiology, and prevention. J Hosp Infect 2008;70:310.CrossRefGoogle Scholar
Archibald, L, Phillips, L, Monnet, D, McGowan, JE Jr, Tenover, F, Gaynes, R. Antimicrobial resistance in isolates from inpatients and outpatients in the United States: increasing importance of the intensive care unit. Clin Infect Dis 1997;24:211215.CrossRefGoogle ScholarPubMed
Fridkin, SK, Edwards, JR, Tenover, FC, Gaynes, RP, McGowan, JE Jr. Antimicrobial resistance prevalence rates in hospital antibiograms reflect prevalence rates among pathogens associated with hospital-acquired infections. Clin Infect Dis 2001;33:324329.CrossRefGoogle ScholarPubMed
Streit, JM, Jones, RN, Sader, HS, Fritsche, TR. Assessment of pathogen occurrences and resistance profiles among infection patients in the intensive care unit: report from the SENTRY antimicrobial surveillance program (North America, 2001). Int J Antimicrob Agents 2004;24:111118.CrossRefGoogle Scholar
The 2017 national and state HAI progress report. Centers for Disease Control and Prevention (CDC) website. https://www.cdc.gov/hai/data/portal/progress-report.html. Published March 2019. Accessed July 3, 2019.Google Scholar
Pappas, PG, Kauffman, CA, Andes, DR, et al. Clinical practice guideline for the management of candidiasis: 2016 update by the Infectious Diseases Society of America. Clin Infect Dis 2016;62:e1e50.CrossRefGoogle ScholarPubMed

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Antimicrobial-resistant pathogens associated with adult healthcare-associated infections: Summary of data reported to the National Healthcare Safety Network, 2015–2017
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Antimicrobial-resistant pathogens associated with adult healthcare-associated infections: Summary of data reported to the National Healthcare Safety Network, 2015–2017
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Antimicrobial-resistant pathogens associated with adult healthcare-associated infections: Summary of data reported to the National Healthcare Safety Network, 2015–2017
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *