We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
This journal utilises an Online Peer Review Service (OPRS) for submissions. By clicking "Continue" you will be taken to our partner site
https://mc03.manuscriptcentral.com/clp-hpl.
Please be aware that your Cambridge account is not valid for this OPRS and registration is required. We strongly advise you to read all "Author instructions" in the "Journal information" area prior to submitting.
To save this undefined to your undefined account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your undefined account.
Find out more about saving content to .
To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Stimulated Brillouin scattering (SBS) effect is currently the major limitation for the power scaling of single-frequency/narrow linewidth fiber laser systems. A single-mode linearly polarized all-fiber amplifier system is set up to investigate SBS effect in triple-frequency high-power amplifiers. With this amplifier, up to 302 W output power with 83% slope efficiency is achieved and the SBS threshold is scaled up to 12 dB. To the best of our knowledge, this is the highest output power of multifrequency laser from a single-mode polarization maintaining fiber. Good spectral properties and high brightness make this laser source available for the application of second harmonic generation, coherent beam combining.
The improved laser-to-pedestal contrast ratio enabled by current high-power laser pulse cleaning techniques allows the fine features of the target survive before the main laser pulse arrives. We propose to introduce the nano-fabrication technologies into laser–plasma interaction to explore the novel effects of micro-structures. We found out that not only laser-driven particle sources but also the laser pulse itself can be manipulated by specifically designed micro-cylinder and -tube targets, respectively. The proposal was supported by full-3D particle-in-cell simulations and successful proof-of-principle experiments for the first time. We believe this would open a way to manipulate relativistic laser–plasma interaction at the micro-size level.
Optical vortices are structures of the electromagnetic field with a spiral phase ramp about a point-phase singularity, carrying orbital angular momentum (OAM). Recently, OAM has been imprinted to short-wavelength radiation through high-order harmonic generation (HHG), leading to the emission of attosecond twisted beams in the extreme-ultraviolet (XUV) regime. We explore the details of the mapping of the driving vortex to its harmonic spectrum. In particular, we show that the geometry of the harmonic vortices is convoluted, arising from the superposition of the contribution from the short and long quantum paths responsible of HHG. Finally, we show how to take advantage of transverse phase-matching to select twisted attosecond beams with different spatiotemporal properties.
The application of laser pulses with psec or shorter duration enables nonthermal efficient ultrahigh acceleration of plasma blocks with homogeneous high ion energies exceeding ion current densities of $10^{12}~\text{A}~\text{cm}^{-2}$. The effects of ultrahigh acceleration of plasma blocks with high energy proton beams are proposed for muon production in a compact magnetic fusion device. The proposed new scheme consists of an ignition fusion spark by muon catalyzed fusion ($\unicode[STIX]{x03BC}$CF) in a small mirror-like configuration where low temperature D–T plasma is trapped for a duration of $1~\unicode[STIX]{x03BC}\text{s}$. This initial fusion spark produces sufficient alpha heating in order to initiate the fusion process in the main device. The use of a multi-fluid global particle and energy balance code allows us to follow the temporal evolution of the reaction rate of the fusion process in the device. Recent progress on the ICAN and IZEST projects for high efficient high power and high repetition rate laser systems allows development of the proposed device for clean energy production. With the proposed approaches, experiments on fusion nuclear reactions and $\unicode[STIX]{x03BC}$CF process can be performed in magnetized plasmas in existing kJ$/$PW laser facilities as the GEKKO-LFEX, the PETAL and the ORION or in the near future laser facilities as the ELI-NP Romanian pillar.
The laser-induced relativistic shock waves are described. The shock waves can be created directly by a high irradiance laser or indirectly by a laser acceleration of a foil that collides with a second static foil. A special case of interest is the creation of laser-induced fusion where the created alpha particles create a detonation wave. A novel application is suggested with the shock wave or the detonation wave to ignite a pre-compressed target. In particular, the deuterium–tritium fusion is considered. It is suggested that the collision of two laser accelerated foils might serve as a novel relativistic accelerator for bulk material collisions.
High harmonic generation in gas jets was investigated in different gases up to more than 14 bar backing pressure. The observation of increase of harmonic intensity with increasing pressure and laser intensity shows evidence of the presence of clusters in Xe with an increased efficiency compared with He, whereas Ar is an intermediate case for which clusters will start to dominate above a certain backing pressure. Spectral investigations give evidence for tunable harmonic generation in a broad spectral range. A spectral shift of opposite signature caused by the free electrons in the focal volume and the nanoplasmas inside the cluster was observed.
Cerenkov wake amplification can be used as an accelerating scheme, in which a trigger bunch of electrons propagating inside a cylindrical waveguide filled with an active medium generates an initial wake field. Due to the multiple reflections inside the waveguide, the wake may be amplified significantly more strongly than when propagating in a boundless medium. Sufficiently far away from the trigger bunch the wake, which travels with the same phase velocity as the bunch, reaches saturation and it can accelerate a second bunch of electrons trailing behind.
For a $\def \xmlpi #1{}\def \mathsfbi #1{\boldsymbol {\mathsf {#1}}}\let \le =\leqslant \let \leq =\leqslant \let \ge =\geqslant \let \geq =\geqslant \def \Pr {\mathit {Pr}}\def \Fr {\mathit {Fr}}\def \Rey {\mathit {Re}}\mathrm{CO}_{2}$ gas mixture our numerical and analytical calculations indicate that a short saturation length and a high gradient can be achieved with a large waveguide radius filled with a high density of excited atoms and a trigger bunch that travels at a velocity slightly above the Cerenkov velocity. To obtain a stable level of saturated wake that will be suitable for particle acceleration, it is crucial to satisfy the single-mode resonance condition, which requires high accuracy in the waveguide radius and the ratio between the electron phase velocity and the Cerenkov velocity. For single-mode propagation our model indicates that it is feasible to obtain gradients as high as $\mathrm{GV\ m}^{-1}$ in a waveguide length of cm.
We present the first steps of a design of the optimal parameters for a full Bragg X-Ray free electron laser (BX-FEL). Aiming towards a future source of coherent X-ray radiation, operating in the strong Compton regime, we envisage the system to be the seed for an advanced light source or compact medical X-ray source. Here we focus on the design of the accelerator parameters: maximum gradient, optimal accelerated charge, maximum efficiency, and ‘wake coefficient’, which relates to the decelerating electric field generated due to the motion of a charged-line or train of charged-lines. Specifically, we demonstrate that the maximum efficiency has optimal value and given the fluence of the materials, the maximum accelerated charge in the train is constant. These two results might be important in any future design.
A preliminary investigation on short-wavelength ablation mechanisms of poly(methyl methacrylate) (PMMA) and poly (1,4-phenylene ether ether-sulfone) (PPEES) by extreme ultraviolet (EUV) radiation at 13.5 nm using a table-top laser-produced plasma from a gas-puff target at LLG (Göttingen) and at 46.9 nm by a 10 Hz desktop capillary discharge laser operated at the Institute of Physics (Prague) is presented. Ablation of polymer materials is initiated by photo-induced polymer chain scissions. The ablation occurs due to the formation of volatile products by the EUV radiolysis removed as an ablation plume from the irradiated material into the vacuum. In general, cross-linking of polymer molecules can compete with the chain decomposition. Both processes may influence the efficiency and quality of micro(nano)structuring in polymer materials. Wavelength is a critical parameter to be taken into account when an EUV ablation process occurs, because different wavelengths result in different energy densities in the near-surface region of the polymer exposed to nanosecond pulses of intense EUV radiation.
An effective damage test method based on a marker-based watershed algorithm with gray control (MWGC) is proposed to study the properties of damage induced by near-field laser irradiation for large-aperture laser facilities. Damage tests were performed on fused silica samples and information on the size of damage sites was obtained by this new algorithm, which can effectively suppress the issue of over-segmentation of images resulting from non-uniform illumination in dark-field imaging. Experimental analysis and results show that the lateral damage growth on the exit surface is exponential, and the number of damage sites decreases sharply with damage site size in the damage site distribution statistics. The average damage growth coefficients fitted according to the experimental results for Corning-7980 and Heraeus-Suprasil 312 samples at 351 nm are $\def \xmlpi #1{}\def \mathsfbi #1{\boldsymbol {\mathsf {#1}}}\let \le =\leqslant \let \leq =\leqslant \let \ge =\geqslant \let \geq =\geqslant \def \Pr {\mathit {Pr}}\def \Fr {\mathit {Fr}}\def \Rey {\mathit {Re}}1.10 \pm 0.31$ and $0.60 \pm 0.09$, respectively.
This paper presents a new method to control the position of a micro-column snow target. This target enables the measurement of the mean electron density of the pre-plasma created by a pre-pulse with different time delays. This research will allow a better understanding of the generation of fast protons from the interaction between a structured pre-plasma and a high intensity laser.
In the far field of the intensity distribution of the beam delivered by a two-stage transient–collisional excitation X-ray laser (XRL), a non-expected interference pattern that is stable from shot to shot has been discovered. It is demonstrated that the interference is caused by the emergence of an imaginary source in the amplifying plasma, which is phase matched to the radiation of the generator. The observed phenomenon is called an X-ray coherent mirage. To explain the obtained results, a new theoretical approach is developed. The basic essential conditions for formation of the X-ray mirage are formulated, and possible applications are discussed. This paper details the experiments, including the formulation of the necessary and sufficient conditions for formation of the X-ray mirage, and possible applications are discussed.