Hostname: page-component-8448b6f56d-c4f8m Total loading time: 0 Render date: 2024-04-25T03:50:33.879Z Has data issue: false hasContentIssue false

Zircon U–Pb–Hf snapshots on the crustal evolution of the Serbo-Macedonian massif: new insights from Ammouliani island (Northern Greece)

Published online by Cambridge University Press:  02 August 2021

Konstantinos Papapavlou*
Affiliation:
GEOTOP, Université du Québec à Montréal, Montréal, QC, H3C 3P8, Canada
*
Author for correspondence: Konstantinos Papapavlou, Email: constantinepapapavlou@gmail.com

Abstract

Zircon U–Pb and Lu–Hf isotope microanalysis was conducted in (meta)-igneous units of Ammouliani island to characterize crust-forming and reworking events in the Serbo-Macedonian massif. Zircon grains from an orthogneiss of the Vertiskos unit yielded a U–Pb crystallization age for the igneous precursor at 458.8 ± 11 Ma with dominantly subchondritic ϵHf values indicating reworking of Neoproterozoic basement. A weighted mean ϵHf value of 0.7 ± 2.4 from oscillatory zoned zircon grains of the Ouranoupoli granodiorite indicates juvenile crustal input at 52.1 ± 0.6 Ma. The U–Pb–Hf zircon archive records discrete stages in the crustal evolution of the Serbo-Macedonian massif.

Type
Rapid Communication
Copyright
© The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abbo, A, Avigad, D and Gerdes, A (2020) Crustal evolution of peri-Gondwana crust into present day Europe: the Serbo-Macedonian and Rhodope massifs as a case study. Lithos 356–357, 105295. doi: 10.1016/j.lithos.2019.105295.CrossRefGoogle Scholar
Antić, M, Peytcheva, I, von Quadt, A, Kounov, A, Trivić, B, Serafimovski, T, Tasev, G, Gerdjikov, I and Wetzel, A (2016) Pre-Alpine evolution of a segment of the North-Gondwanan margin: geochronological and geochemical evidence from the central Serbo-Macedonian Massif. Gondwana Research 36, 523–44. doi: 10.1016/j.gr.2015.07.020.CrossRefGoogle Scholar
Avigad, D, Morag, N, Abbo, A and Gerdes, A (2017) Detrital rutile U–Pb perspective on the origin of the great Cambro-Ordovician sandstone of North Gondwana and its linkage to orogeny. Gondwana Research 51, 1729. doi: 10.1016/j.gr.2017.07.001.CrossRefGoogle Scholar
Balintoni, I and Balica, C (2013) Carpathian peri-Gondwanan terranes in the East Carpathians (Romania): a testimony of an Ordovician, North-African orogeny. Gondwana Research 23, 1053–70. doi: 10.1016/j.gr.2012.07.013.CrossRefGoogle Scholar
Bonev, N, Ovtcharova-Schaltegger, M, Moritz, R, Marchev, P and Ulianov, A (2013) Peri-Gondwanan Ordovician crustal fragments in the high-grade basement of the Eastern Rhodope Massif, Bulgaria: evidence from U–Pb LA-ICP-MS zircon geochronology and geochemistry. Geodinamica Acta 26, 207–29. doi: 10.1080/09853111.2013.858942.CrossRefGoogle Scholar
Bristol, SK, Spry, PG, Voudouris, PC, Melfos, V, Mathur, RD, Fornadel, AP and Sakellaris, GA (2015) Geochemical and geochronological constraints on the formation of shear-zone hosted Cu–Au–Bi–Te mineralization in the Stanos area, Chalkidiki, northern Greece. Ore Geology Reviews 66, 266–82. doi: 10.1016/j.oregeorev.2014.11.001.CrossRefGoogle Scholar
Bouvier, A, Vervoort, JD and Patchett, PJ (2008) The Lu–Hf and Sm–Nd isotopic composition of CHUR: constraints from unequilibrated chondrites and implications for the bulk composition of terrestrial planets. Earth and Planetary Science Letters 273, 4857. doi: 10.1016/j.epsl.2008.06.010.CrossRefGoogle Scholar
Christofides, G, Perugini, D, Koroneos, A, Soldatos, T, Poli, G, Eleftheriadis, G, Del Moro, A and Neiva, AM (2007) Interplay between geochemistry and magma dynamics during magma interaction: an example from the Sithonia Plutonic Complex (NE Greece). Lithos 95, 243–66. doi: 10.1016/j.lithos.2006.07.015.CrossRefGoogle Scholar
De Wet, AP, Miller, JA, Bickle, MJ and Chapman, HJ (1989) Geology and geochronology of the Arnea, Sithonia and Ouranopolis intrusions, Chalkidiki peninsula, northern Greece. Tectonophysics 161, 6579. doi: 10.1016/0040-1951(89)90303-X.CrossRefGoogle Scholar
Dimitrijević, M (1974) Yugoslavian Carpathians and Serbo-Macedonian Massif – the Serbo-Macedonian Massif. In Tectonics of the Carpathian-Balkan Regions (ed. Mahel’, M), pp. 291–6. Bratislava: Geological Institute of Dyoniz Stur.Google Scholar
Dixon, JE and Dimitriadis, S (1984) Metamorphosed ophiolitic rocks from the Serbo-Macedonian Massif, near Lake Volvi, North-east Greece. In The Geological Evolution of the Eastern Mediterranean (eds Dixon, JE and Robertson, AHF), pp. 603–18. Geological Society of London, Special Publication no. 17.CrossRefGoogle Scholar
Fisher, CM, Hanchar, JM, Samson, SD, Dhuime, B, Blichert-Toft, J, Vervoort, JD and Lam, R (2011) Synthetic zircon doped with hafnium and rare earth elements: a reference material for in situ hafnium isotope analysis. Chemical Geology 286, 3247. doi: 10.1016/j.chemgeo.2011.04.013.CrossRefGoogle Scholar
Fisher, CM, Vervoort, JD and Hanchar, JM (2014) Guidelines for reporting zircon Hf isotopic data by LA-MC-ICPMS and potential pitfalls in the interpretation of these data. Chemical Geology 363, 125–33. doi: 10.1016/j.chemgeo.2013.10.019.CrossRefGoogle Scholar
Frei, R (1996) The extent of inter-mineral isotope equilibrium: a systematic bulk U–Pb and Pb step leaching (PbSL) isotope study of individual minerals from the Tertiary granite of Jerissos (northern Greece). European Journal of Mineralogy 8, 1175–90. doi: 10.1127/ejm/8/5/1175.CrossRefGoogle Scholar
Himmerkus, F, Ander, B, Reischmann, T and Kostopoulos, D (2007) Gondwana-derived terranes in the northern Hellenides. In 4-D Framework of Continental Crust (eds Hatcher, RD, Carlson, MP, McBride, JH and Martinez Catalán, JR), pp. 379–90. Geological Society of America, Memoirs no. 200.CrossRefGoogle Scholar
Himmerkus, F, Reischmann, T and Kostopoulos, D (2006) Late Proterozoic and Silurian basement units within the Serbo-Macedonian Massif, northern Greece: the significance of terrane accretion in the Hellenides. In Tectonic Development of the Eastern Mediterranean Region (eds Robertson, AHF and Mountrakis, D), pp. 35–50. Geological Society of London, Special Publication no. 260.CrossRefGoogle Scholar
Himmerkus, F, Reischmann, T and Kostopoulos, D (2009) Serbo-Macedonian revisited: a Silurian basement terrane from northern Gondwana in the Internal Hellenides, Greece. Tectonophysics 473, 2035. doi: 10.1016/j.tecto.2008.10.016.CrossRefGoogle Scholar
Himmerkus, F, Zachariadis, P, Reischmann, T and Kostopoulos, D (2012) The basement of the Mount Athos peninsula, northern Greece: insights from geochemistry and zircon ages. International Journal of Earth Sciences 101, 1467–85. doi: 10.1007/s00531-011-0644-4.CrossRefGoogle Scholar
Juteau, M, Michard, A and Albarède, F (1986) The Pb–Sr–Nd isotope geochemistry of some recent circum-Mediterranean granites. Contributions to Mineralogy and Petrology 92, 331–40. doi: 10.1007/BF00572162.CrossRefGoogle Scholar
Kilias, A, Falalakis, G and Mountrakis, D (1999) Cretaceous–Tertiary structures and kinematics of the Serbomacedonian metamorphic rocks and their relation to the exhumation of the Hellenic hinterland (Macedonia, Greece). International Journal of Earth Sciences 88, 513–31. doi: 10.1007/s005310050282.CrossRefGoogle Scholar
Kockel, F, Mollat, H and Antoniadis, P (1978) Geological Map of Greece, Ierissos Sheet. Scale 1:50.000. Athens: Institute of Geology and Mineral Exploration of Greece.Google Scholar
Kohanpour, F, Kirkland, CL, Gorczyk, W, Occhipinti, S, Lindsay, MD, Mole, D and Le Vaillant, M (2019) Hf isotopic fingerprinting of geodynamic settings: integrating isotopes and numerical models. Gondwana Research 73, 190–9. doi: 10.1016/j.gr.2019.03.017.CrossRefGoogle Scholar
Lancaster, PJ, Storey, CD, Hawkesworth, CJ and Dhuime, B (2011) Understanding the roles of crustal growth and preservation in the detrital zircon record. Earth and Planetary Science Letters 305, 405–12. doi: 10.1016/j.epsl.2011.03.022.CrossRefGoogle Scholar
Liati, AL and Gebauer, D (1999) Constraining the prograde and retrograde P-T-t path of Eocene HP rocks by SHRIMP dating of different zircon domains: inferred rates of heating, burial, cooling and exhumation for central Rhodope, northern Greece. Contributions to Mineralogy and Petrology 135, 340–54. doi: 10.1007/s004100050516.CrossRefGoogle Scholar
Liati, A, Theye, T, Fanning, CM, Gebauer, D and Rayner, N (2016) Multiple subduction cycles in the Alpine orogeny, as recorded in single zircon crystals (Rhodope zone, Greece). Gondwana Research 29, 199207. doi: 10.1016/j.gr.2014.11.007.CrossRefGoogle Scholar
Lips, ALW, White, SH and Wijbrans, JR (2000) Middle–Late Alpine thermotectonic evolution of the southern Rhodope Massif, Greece. Geodinamica Acta 13, 281–92.CrossRefGoogle Scholar
Marchev, P, Georgiev, S, Raicheva, R, Peytcheva, I, von Quadt, A, Ovtcharova, M and Bonev, N (2013) Adakitic magmatism in post-collisional setting: an example from the Early–Middle Eocene Magmatic Belt in Southern Bulgaria and Northern Greece. Lithos 180–181, 159–80. doi: 10.1016/j.lithos.2013.08.024.CrossRefGoogle Scholar
Moghadam, HS, Griffin, WL, Li, XH, Santos, JF, Karsli, O, Stern, RJ, Ghorbani, G, Gain, S, Murphy, R and O’Reilly, SY (2017) Crustal evolution of NW Iran: Cadomian arcs, Archean fragments and the Cenozoic magmatic flare-up. Journal of Petrology 58, 2143–90. doi: 10.1093/petrology/egy005.CrossRefGoogle Scholar
Moorbath, S, Whitehouse, MJ and Kamber, BS (1997) Extreme Nd-isotope heterogeneity in the early Archaean – fact or fiction? Case histories from northern Canada and West Greenland. Chemical Geology 135, 213–31. doi: 10.1016/S0009-2541(96)00117-9.CrossRefGoogle Scholar
Morel, MLA, Nebel, O, Nebel-Jacobsen, YJ, Miller, JS and Vroon, PZ (2008) Hafnium isotope characterization of the GJ-1 zircon reference material by solution and laser-ablation MC-ICPMS. Chemical Geology 255, 231–5. doi: 10.1016/j.chemgeo.2008.06.040.CrossRefGoogle Scholar
Neubauer, F (2002) Evolution of late Neoproterozoic to early Paleozoic tectonic elements in Central and Southeast European Alpine mountain belts: review and synthesis. Tectonophysics 352, 87103. doi: 10.1016/S0040-1951(02)00190-7.CrossRefGoogle Scholar
Okay, AI, Bozkurt, E, Satir, M, Yiǧitbaş, E, Crowley, QG and Shang, CK (2008a) Defining the southern margin of Avalonia in the Pontides: geochronological data from the Late Proterozoic and Ordovician granitoids from NW Turkey. Tectonophysics 461, 252–64. doi: 10.1016/j.tecto.2008.02.004.CrossRefGoogle Scholar
Okay, AI, Satir, M and Shang, CK (2008b) Ordovician metagranitoid from the Anatolide-Tauride Block, northwest Turkey: geodynamic implications. Terra Nova 20, 280–8. doi: 10.1111/j.1365-3121.2008.00818.x.CrossRefGoogle Scholar
Papapavlou, K, Strachan, RA, Storey, CD and Bullen, D (2021) Tectonic significance of a supra-ophiolitic sedimentary cover succession, Unst, Shetland, Scottish Caledonides: insights from the U–Pb–Hf detrital zircon record. Journal of the Geological Society, London, published online 9 April 2021. doi: 10.1144/jgs2020-169.CrossRefGoogle Scholar
Paton, C, Hellstrom, J, Paul, B, Woodhead, J and Hergt, J (2011) Iolite: freeware for the visualisation and processing of mass spectrometric data. Journal of Analytical Atomic Spectrometry 26, 2508–18. doi: 10.1039/c1ja10172b.CrossRefGoogle Scholar
Perugini, D, Poli, G, Christofides, G, Eleftheriadis, G, Koroneos, A and Soldatos, T (2004) Mantle-derived and crustal melts dichotomy in northern Greece: spatiotemporal and geodynamic implications. Geological Journal 39, 6380. doi: 10.1002/gj.944.CrossRefGoogle Scholar
Pe-Piper, G and Piper, D (2002) The Igneous Rocks of Greece: The Anatomy of an Orogen. Beiträge zur Regionalen Geologie der Erde. Stuttgart: Gebrüder Borntraeger, 573 pp.Google Scholar
Pe-Piper, G and Piper, DJW (2006) Unique features of the Cenozoic igneous rocks of Greece. In Postcollisional Tectonics and Magmatism in the Mediterranean Region and Asia (eds Dilek, Y and Pavlides, S), pp. 259–82. Geological Society of America, Special Paper no. 409.CrossRefGoogle Scholar
Peytcheva, I, Macheva, L, von Quadt, A and Zidarov, N (2015) Gondwana-derived units in Ograzhden and Belasitsa Mountains, Serbo-Macedonian Massif (SW Bulgaria): combined geochemical, petrological and U–Pb zircon-xenotime age constraints. Geologica Balcanica 44, 5184.Google Scholar
Poli, G, Christofidis, G, Koronaios, A, Soldatos, T, Perugini, D, Langone, A (2009) Early Triassic granitic magmatism – Arnea and Kerkini granitic complexes – in the Vertiskos unit (Serbo-Macedonian massif, north-eastern Greece) and its significance in the geodynamic evolution of the area. Acta Vulcanologica 21, 4770.Google Scholar
Qian, Q and Hermann, J (2013) Partial melting of lower crust at 10-15 kbar: constraints on adakite and TTG formation. Contributions to Mineralogy and Petrology, 165, 1195–224. doi: 10.1007/s00410-013-0854-9.CrossRefGoogle Scholar
Rudnick, RL and Gao, S (2013) Composition of the continental crust. In Volume 4: Treatise on Geochemistry, Second Edition (eds Turekian, KK and Holland, HD), pp. 151. Amsterdam: Elsevier. doi: 10.1016/B978-0-08-095975-7.00301-6.Google Scholar
Santos, MM, Lana, C, Scholz, R, Buick, I, Schmitz, MD, Kamo, SL, Gerdes, A, Corfu, F, Tapster, S, Lancaster, P, Storey, CD, Basei, MAS, Tohver, E, Alkmim, A, Nalini, H, Krambrock, K, Fantini, C and Wiedenbeck, M (2017) A new appraisal of Sri Lankan BB zircon as a reference material for LA-ICP-MS U–Pb geochronology and Lu–Hf isotope tracing. Geostandards and Geoanalytical Research 41, 335–58. doi: 10.1111/ggr.12167.CrossRefGoogle Scholar
Siron, CR, Thompson, JFH, Baker, T, Darling, R and Dipple, G (2019) Origin of Au-rich carbonate-hosted replacement deposits of the Kassandra mining district, northern Greece: evidence for late Oligocene, structurally controlled, and zoned hydrothermal systems. Economic Geology 114, 1389–414. doi: 10.5382/econgeo.4664.CrossRefGoogle Scholar
Sláma, J, Košler, J, Condon, DJ, Crowley, JL, Gerdes, A, Hanchar, JM, Horstwood, MSA, Morris, GA, Nasdala, L, Norberg, N, Schaltegger, U, Schoene, B, Tubrett, MN and Whitehouse, MJ (2008) Plešovice zircon – a new natural reference material for U–Pb and Hf isotopic microanalysis. Chemical Geology 249, 135. doi: 10.1016/j.chemgeo.2007.11.005.CrossRefGoogle Scholar
Söderlund, U, Patchett, PJ, Vervoort, JD and Isachsen, CE (2004) The 176Lu decay constant determined by Lu–Hf and U–Pb isotope systematics of Precambrian mafic intrusions. Earth and Planetary Science Letters 219, 311–24. doi: 10.1016/S0012-821X(04)00012-3.CrossRefGoogle Scholar
Thirlwall, MF and Anczkiewicz, R (2004) Multidynamic isotope ratio analysis using MC-ICP-MS and the causes of secular drift in Hf, Nd and Pb isotope ratios. International Journal of Mass Spectrometry 235, 5981. doi: 10.1016/j.ijms.2004.04.002.CrossRefGoogle Scholar
Vermeesch, P (2018) IsoplotR: a free and open toolbox for geochronology. Geoscience Frontiers 9, 1479–93. doi: 10.1016/j.gsf.2018.04.001.CrossRefGoogle Scholar
Vervoort, JD, Kemp, AI and Fisher, CM (2018) Hf isotope constraints on evolution of the depleted mantle and growth of continental crust. American Geophysical Union, Fall Meeting 2018, abstract #V23A-07.Google Scholar
Vervoort, JD, Patchett, PJ, Albarède, F, Blichert-Toft, J, Rudnick, R and Downes, H (2000) Hf–Nd isotopic evolution of the lower crust. Earth and Planetary Science Letters 181, 115–29. doi: 10.1016/S0012-821X(00)00170-9.CrossRefGoogle Scholar
Vervoort, JD, Plank, T and Prytulak, J (2011) The Hf–Nd isotopic composition of marine sediments. Geochimica et Cosmochimica Acta 75, 5903–26. doi: 10.1016/j.gca.2011.07.046.CrossRefGoogle Scholar
Wickham, H (2016) ggplot2: Elegant Graphics for Data Analysis. New York: Springer-Verlag. https://ggplot2.tidyverse.org.CrossRefGoogle Scholar
Wiedenbeck, M, Allé, P, Corfu, F, Griffin, WL, Meier, M, Oberli, F, von Quadt, A, Roddick, JC and Spiegel, W (1995) Three natural zircon standards for U–Th–Pb, Lu–Hf, trace element and REE analyses. Geostandards Newsletter 19, 123. doi: 10.1111/j.1751-908X.1995.tb00147.x.CrossRefGoogle Scholar
Zlatkin, O, Avigad, D and Gerdes, A (2018) New detrital zircon geochronology from the Cycladic Basement (Greece): implications for the Paleozoic accretion of Peri-Gondwanan terranes to Laurussia. Tectonics 37, 4679–99. doi: 10.1029/2018TC005046.CrossRefGoogle Scholar
Supplementary material: File

Papapavlou supplementary material

Papapavlou supplementary material

Download Papapavlou supplementary material(File)
File 68.8 KB