Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-21T16:59:18.609Z Has data issue: false hasContentIssue false

Trenchward Plio-Quaternary volcanism migration in the Trans-Mexican Volcanic Belt: the case of the Sierra Nevada range

Published online by Cambridge University Press:  28 January 2011

ANITA CADOUX*
Affiliation:
Laboratorio Universitario de Geoquímica Isotópica, Instituto de Geofísica, Universidad Nacional Autónoma de México, Circuito Institutos s/n, Ciudad Universitaria, 04510 México D.F., México Clermont Université, Université Blaise Pascal, Laboratoire Magmas et Volcans, BP 10448, F-63000 Clermont-Ferrand, France CNRS, UMR 6524, LMV, F-63038 Clermont-Ferrand, France IRD, R 163, LMV, F-63038 Clermont-Ferrand, France
YVES MISSENARD
Affiliation:
UMR 8148 IDES, Université Paris Sud-11, Bât. 504, 91405 Orsay Cedex, France
RAYMUNDO G. MARTINEZ-SERRANO
Affiliation:
Laboratorio Universitario de Geoquímica Isotópica, Instituto de Geofísica, Universidad Nacional Autónoma de México, Circuito Institutos s/n, Ciudad Universitaria, 04510 México D.F., México
HERVÉ GUILLOU
Affiliation:
Laboratoire des Sciences du Climat et de l'Environnement (LSCE), Unité mixte de recherche CEA-CNRS-UVSQ (UMR 1572), Bât.701, 91191 Gif-sur-Yvette, France
*
Author for correspondence: anita.cadoux@cnrs-orleans.fr

Abstract

The Miocene–Quaternary Trans-Mexican Volcanic arc is thought to have grown southwards (i.e. trenchward) since the Pliocene. This theory is mainly supported by roughly N–S-directed polygenetic volcanic ranges along which volcanic activity migrates southwards with time. We investigated the eruptive history of one of these ranges, the Sierra Nevada (east boundary of Mexico City basin), by compiling literature ages and providing new K–Ar dates. Our K–Ar ages are the first ones for the northernmost Tláloc and Telapón volcanoes and for the ancestral Popocatépetl (Nexpayantla). The obtained ages reveal that the four stratovolcanoes forming the range worked contemporaneously during most of the Middle to Late Pleistocene. However, taking into account the onset of the volcanic activity, a southward migration is evidenced along the Sierra Nevada: volcanism initiated at its northern tip at least 1.8 Ma ago at Tláloc volcano, extended southwards 1 Ma ago with Iztaccíhuatl and appeared at its southern end 329 ka ago with the Nexpayantla cone. Such a migration would be most probably primarily driven by Cocos slab roll-back and steepening rather than by regional crustal tectonics, which played a secondary role by controlling the apparent alignment of the volcanoes.

Type
Original Article
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alaniz-Alvarez, S. A., Nieto-Samaniego, A. F. & Ferrari, L. 1998. Effect of strain rate in the distribution of monogenetic and polygenetic volcanism in the Transmexican volcanic belt. Geology 26, 591–4.2.3.CO;2>CrossRefGoogle Scholar
Arce, J. L., Macías, R., García Palomo, A., Capra, L., Macías, J. L., Layer, P. & Rueda, H. 2008. Late Pleistocene flank collapse of Zempoala volcano (Central México) and the role of fault reactivation. Journal of Volcanology and Geothermal Research 177, 944–58.CrossRefGoogle Scholar
Argnani, A. & Savelli, C. 1999. Cenozoic volcanism and tectonics in the southern Tyrrhenian sea: space-time distribution and geodynamic significance. Journal of Geodynamics 27, 409–32.Google Scholar
Ban, M., Hasenaka, T., Delgado-Granados, H. & Takaoka, N. 1992. K–Ar ages of lavas from shield volcanoes in the Michoacan–Guanajuato volcanic field, Mexico. Geofisica Internacional 31, 467–75.CrossRefGoogle Scholar
Cadoux, A., Martínez-Serrano, R. G., Guillou, H., Macías, J. L. & García-Palomo, A. 2008. First geochronological and petrogeochemical data on the lavas from the Tláloc-Telapón volcanic complex (Sierra Nevada, Trans-Mexican Volcanic Belt). IAVCEI General Assembly Reykjavik, Iceland.Google Scholar
Cervantes, P. & Wallace, P. J. 2003. Role of H2O in subduction-zone magmatism: new insights from melt inclusions in high-Mg basalts from central Mexico. Geology 31, 235–8.Google Scholar
Charbit, S., Guillou, H. & Turpin, L. 1998. Cross calibration of K–Ar standard minerals using an unspiked Ar measurement technique. Chemical Geology 150, 147–59.CrossRefGoogle Scholar
Conte, G., Urrutia-Fucugauchi, J., Goguitchaichvili, A., Soler-Arechalde, A. M. & Morton-Bermea, O. 2004. Paleomagnetic study of lavas from the Popocatépetl volcanic region, Central Mexico. International Geology Review 46, 210–25.CrossRefGoogle Scholar
Cornwall, I. W. 1971. Geology and early man in Central Mexico: the Henry Stopes lecture, 1970. Proceedings of the Geologists’ Association 82, 379–91.CrossRefGoogle Scholar
De La Cruz-Reyna, S., Quezada, J. L., Peña, C., Zepeda, O. & Sanchez, T. 1995. Historia de la actividad reciente del Volcan Popocatépetl. Volcán Popocatépetl Estudios Realizados durante la Crisis de 1994–1995. pp. 322. México D.F.: SINAPROC – CENAPRED – UNAM.Google Scholar
Delgado-Granados, H., De La Cruz Reyna, S. & Tilling, R. I. 2008. The 1994–present eruption of Popocatépetl volcano: background, current activity, and impacts. Journal of Volcanology and Geothermal Research 170, 14.CrossRefGoogle Scholar
Delgado-Granados, H., Urrutia-Fucugauchi, J., Hasenaka, T. & Ban, M. 1995. Southwestward volcanic migration in the western Trans-Mexican Volcanic Belt during the last 2 Ma. Geofisica Internacional 34, 341–52.CrossRefGoogle Scholar
Espinasa-Pereña, R. & Martin-Del Pozzo, A. L. 2006. Morphostratigraphic evolution of Popocatépetl volcano, Mexico. In Neogene–Quaternary Continental Margin Volcanism: A Perspective from Mexico (eds Siebe, C., Macias, J. L. & Aguirre-Diaz, G. J.), pp. 115–37. Geological Society of America, Special Paper no. 402.Google Scholar
Faccena, C., Funiciello, F., Giardini, D. & Lucente, P. 2001. Episodic back-arc extension during restricted mantle convection in the Central Mediterranean. Earth and Planetary Science Letters 187, 105–16.CrossRefGoogle Scholar
Ferrari, L. 2004. Slab detachment control on mafic volcanic pulse and mantle heterogeneity in central Mexico. Geology 32, 7780.CrossRefGoogle Scholar
Fuhrmann, U., Lippolt, H. J. & Hess, J. C. 1987. HD-B1 biotite reference material for K-Ar chronometry. Chemical Geology 66, 4151.Google Scholar
García-Palomo, A., Macías, J. L., Tolson, G., Valdez, G. & Mora, J. C. 2002. Volcanic stratigraphy and geological evolution of the Apan region, east-central sector of the Transmexican Volcanic Belt. Geofísica Internacional 41, 133–50.Google Scholar
García-Palomo, A., Zamorano, J. J., López-Miguel, C. & Galván-García, A. 2008. El arreglo morfoestructural de La Sierra de las Cruces, México central. Revista Mexicana de Ciencias Geológicas 25, 158–78.Google Scholar
Gómez-Tuena, A., Lagatta, A., Langmuir, C. H., Goldstein, S. L., Ortega-Gutierrez, F. & Carrasco-Nuñez, G. 2003. Temporal control of subduction magmatism in the eastern Trans-Mexican Volcanic Belt: mantle sources, slab contributions, and crustal contamination. Geochemistry, Geophysics, Geosystems 4, doi:10.1029/2003GC000524.CrossRefGoogle Scholar
Gómez-Tuena, A., Orozco-Esquivel, M. T. & Ferrari, L. 2007. Igneous petrogenesis of the Trans-Mexican Volcanic Belt. In Geology of Mexico: Celebrating the Centenary of the Geological Society of Mexico (eds Alaniz-Álvarez, S. A. & Nieto-Samaniego, A. F.), pp. 129–81. Geological Society of America, Special Paper no. 422.Google Scholar
Guillou, H., Carracedo, J. C., Torrado, F. P. & Badiola, E. R. 1996. K–Ar ages and magnetic stratigraphy of a hotspot-induced, fast grown oceanic island: El Hierro, Canary Islands. Journal of Volcanology and Geothermal Research 73, 141–55.CrossRefGoogle Scholar
Gvirtzman, Z. & Nur, A. 1999. The formation of Mount Etna as the consequence of slab rollback. Nature 401, 782–5.CrossRefGoogle Scholar
Hautmann, S. & Lippolt, H. J. 2000. 40Ar/39Ar dating of central European K-Mn oxides – a chronological framework of supergene alteration processes during the Neogene. Chemical Geology 170, 3780.CrossRefGoogle Scholar
Hess, J. C. & Lippolt, H. J. 1994. Compilation of K-Ar measurements on HD-B1 standard biotite. In Phanerozoic Time Scale (ed. Odin, G. S.). pp. 1923. Paris: Bulletin of Liaison and Information of the IUGS Subcommission on Geochronology.Google Scholar
Huddart, D. & Gonzalez, S. 2004. Pyroclastic flows and associated sediments, Tláloc-Telapón, piedmont fringe of the eastern basin of Mexico. In Penrose Conference (eds Aguirre-Diaz, G. J., Macías, J. L. & Siebe, C.). p. 35. Metepec, Puebla, Mexico: UNAM.Google Scholar
Husker, A. & Davis, P. M. 2009. Tomography and thermal state of the Cocos plate subduction beneath Mexico City. Journal of Geophysical Research 114, B04306, doi:10.1029/2008JB006039.CrossRefGoogle Scholar
Johnson, E. R., Wallace, P. J., Delgado Granados, H., Manea, V. C., Kent, A. J. R., Bindeman, I. N. & Donegan, C. S. 2009. Subduction-related volatile recycling and magma generation beneath Central Mexico: insights from melt inclusions, oxygen isotopes and geodynamic models. Journal of Petrology 50, 1729–64.CrossRefGoogle Scholar
Le Bas, M. J., Le Maitre, R. W., Streckeisen, A. & Zanettin, B. 1986. A chemical classification of volcanic rocks based on the total alkali-silica diagram. Journal of Petrology 27, 745–50.CrossRefGoogle Scholar
Luhr, J. 2000. The geology and petrology of Volcan San Juan Nayarit, Mexico and the compositionally zoned Tepic Pumice. Journal of Volcanology and Geothermal Research 95, 109–56.Google Scholar
Luhr, J. F. & Carmichael, I. S. E. 1980. The Colima Volcanic Complex, Mexico. Contributions to Mineralogy and Petrology 71, 343–72.CrossRefGoogle Scholar
Macías, J. L. & Siebe, C. 2005. Popocatépetl's crater filled to the brim: significance for hazard evaluation. Journal of Volcanology and Geothermal Research 141, 327–30.Google Scholar
Márquez, A., Oyarzun, R., De Ignacio, C. & Doblas, M. 2001. Southward migration of volcanic activity in the central Mexican Volcanic Belt: asymmetric extension within a two-layer crustal stretching model. Journal of Volcanology and Geothermal Research 112, 175–87.CrossRefGoogle Scholar
Márquez, A., Oyarzun, R., Doblas, M. & Verma, S. P. 1999. Alkalic (ocean-island basalt type) and calc-alkalic volcanism in the Mexican volcanic belt: a case for plume-related magmatism and propagating rifting at an active margin? Geology 27, 51–4.Google Scholar
Martinez-Serrano, R. G., Schaaf, P., Solis-Pichardo, G., Hernandez-Bernal, M. D. S., Hernandez-Trevino, T., Julio Morales-Contreras, J. & Macías, J. L. 2004. Sr, Nd and Pb isotope and geochemical data from the Quaternary Nevado de Toluca volcano, a source of recent adakitic magmatism, and the Tenango Volcanic Field, Mexico. Journal of Volcanology and Geothermal Research 138, 77110.CrossRefGoogle Scholar
Meier, M., Grobéty, B., Arce, J. L. & Rueda, H. 2007. Origin and age of the volcanic rocks of Tláloc Volcano, Sierra Nevada, Central Mexico. AGU Spring Meeting, American Geophysical Union Joint Assembly, Acapulco (Mexico): Eos, Transactions, AGU.Google Scholar
Moore, G., Marone, C., Carmichael, I. S. E. & Renne, P. 1994. Basaltic volcanism and extension near the intersection of the Sierra Madre volcanic province and the Mexican Volcanic Belt. Geological Society of America Bulletin 106, 383–94.2.3.CO;2>CrossRefGoogle Scholar
Mooser, F. 1975. Historia geológica de la Cuenca de México. In Memoria de las obras del sistema de drenaje profundo del Distrito Federal, México (ed. Elizondo, R. Ríos). pp. 738 y mapa geológico. México D.F.: Departamento del Distrito Federal.Google Scholar
Mooser, F., Nairn, A. E. M. & Negendank, J. F. W. 1974. Palaeomagnetic investigations of the Tertiary and Quaternary igneous rocks: VIII, A palaeomagnetic and petrologic study of volcanics of the Valley of Mexico. Geologische Rundschau 63, 451–83.CrossRefGoogle Scholar
Mora-Alvarez, G., Caballero-Miranda, C., Urrutia-Fucogauchi, J. & Uchiumi, S. 1991. Southward migration of volcanic activity in the Sierra de las Cruces, basin of Mexico? A preliminary K–Ar dating and paleomagnetic study. Geofisica Internacional 30, 6170.Google Scholar
Nixon, G. T. 1988. Petrology of the younger andesites and dacites of Iztaccíhuatl volcano, Mexico: II. Chemical stratigraphy, magma mixing, and the composition of basaltic magma influx. Journal of Petrology 29, 265303.Google Scholar
Nixon, G. T. 1989. The Geology of Iztaccíhuatl Volcano and Adjacent Areas of the Sierra Nevada and Valley of Mexico. Geological Society of America, Special Paper no. 219, 58 pp.Google Scholar
Nixon, G. T., Demant, R. I., Armstrong, R. L. & Harakal, J. E. 1987. K–Ar and geologic data bearing on the age and evolution of the trans-Mexican volcanic belt. Geofísica Internacional 26, 109–58.CrossRefGoogle Scholar
Odin, G. S. 1982. Interlaboratory standards for dating purposes. In Numerical Dating in Stratigraphy (ed. Odin, G. S.). pp. 123–58. New York: John Wiley & Sons.Google Scholar
Osete, M. L., Ruiz-Martínez, V.-C., Caballero, C., Galindo, C., Urrutia-Fucugauchi, J. & Tarling, D. H. 2000. Southward migration of continental volcanic activity in the Sierra de Las Cruces, Mexico: palaeomagnetic and radiometric evidence. Tectonophysics 318, 201–15.CrossRefGoogle Scholar
Pardo, M. & Suarez, G. 1993. Steep subduction geometry of the Rivera plate beneath the Jalisco Block in Western of Mexico. Geophysical Research Letters 20, 2391–4.Google Scholar
Pardo, M. & Suarez, G. 1995. Shape of the subducted Rivera and Cocos plates in southern Mexico: seismic and tectonic implication. Journal of Geophysical Research 100, 12357–73.Google Scholar
Petrone, C. M. & Ferrari, L. 2008. Quaternary adakite Nb-enriched basalt association in the western Trans-Mexican Volcanic Belt: is there any slab melt evidence? Contributions to Mineralogy and Petrology 156, 7386.CrossRefGoogle Scholar
Ponce, L. R., Gaulon, G., Suàrez, G. & Lomas, E. 1992. Geometry and the state of stress of the downgoing Cocos plate in the Isthmus of Tehuantepec. Geophysical Research Letters 19, 773–6.CrossRefGoogle Scholar
Renne, P. R., Swisher, C. C., Deino, A. L., Karner, D. B., Owens, T. L. & Depaolo, D. J. 1998. Intercalibration of standards, absolute ages and uncertainties in 40Ar/39Ar dating. Chemical Geology 145, 117–52.CrossRefGoogle Scholar
Robin, C. 1984. Le Volcan Popocatépetl (Mexique): structure, evolution pétrologique et risques. Bulletin of Volcanology 47, 123.CrossRefGoogle Scholar
Robin, C. & Boudal, C. 1984. Une éruption remarquable par son volume: l'événement de type Saint-Helens du Popocatépetl (Mexique). Comptes Rendus de l'Académie des Sciences Série 2 299, 881–6.Google Scholar
Robin, C. & Boudal, C. 1987. A gigantic Bezymianny-type event at the beginning of modern volcan Popocatépetl. Journal of Volcanology and Geothermal Research 31, 115–30.Google Scholar
Rosenbaum, G. & Lister, G. S. 2004. Neogene and Quaternary rollback evolution of the Tyrrhenian Sea, the Apennines, and the Sicilian Maghrebides. Tectonics 23, 117.CrossRefGoogle Scholar
Rueda, H., Arce, J. L., Macías, J. L. & Garcia-Palomo, A. 2006. A ~31 ka Plinian-subplinian eruption at Tláloc Volcano, Sierra Nevada, Mexico. AGU Fall Meeting, San Francisco (USA): Eos, Transactions, AGU.Google Scholar
Scaillet, S. & Guillou, H. 2004. A critical evaluation of young (near-zero) K–Ar ages. Earth and Planetary Science Letters 220, 265–75.CrossRefGoogle Scholar
Schaaf, P., Stimac, J. I. M., Siebe, C. & Macías, J. L. 2005. Geochemical evidence for mantle origin and crustal processes in volcanic rocks from Popocatépetl and surrounding monogenetic volcanoes, Central Mexico. Journal of Petrology 46, 1243–82.CrossRefGoogle Scholar
Schellart, W. P. 2004. Kinematics of subduction and subduction-induced flow in the upper mantle. Journal of Geophysical Research 109, doi:10.1029/2004JB002970.CrossRefGoogle Scholar
Sheth, H., Torres-Alvarado, I. & Verma, S. P. 2000. Beyond subduction and plumes: a unified tectonic-petrogenetic model for the Mexican Volcanic Belt. International Geology Review 42, 1116–32.CrossRefGoogle Scholar
Siebe, C., Abrams, M. & Macías, J. L. 1995. Derrumbes Gigantes, Depósitos de Avalancha de Escombros y Edad del Actual Cono del Volcán Popocatépetl. Volcán Popocatépetl: Estudios Realizados Durante la Crisis de 1994–1995. pp. 195220. México D.F.: SINAPROC – CENAPRED – UNAM.Google Scholar
Siebe, C. & Macías, J. L. 2006. Volcanic hazards in the Mexico City metropolitan area from eruptions at Popocatépetl, Nevado de Toluca, and Jocotitlan stratovolcanoes and monogenetic scoria cones in the Sierra Chichinautzin volcanic field. In Neogene–Quaternary Continental Margin Volcanism: A Perspective from Mexico (eds Siebe, C., Macias, J. L. & Aguirre-Diaz, G. J.). pp. 253329. Geological Society of America, Special Paper no. 402.Google Scholar
Siebert, L. & Carrasco-Nuñez, G. 2002. Late-Pleistocene to precolumbian behind-the-arc mafic volcanism in the eastern Mexican Volcanic Belt: implications for future hazards. Journal of Volcanology and Geothermal Research 115, 179205.Google Scholar
Singh, S. K. & Pardo, M. 1993. Geometry of the Benioff Zone and state of stress in the overriding plate in central Mexico. Geophysical Research Letters 20, 1483–6.CrossRefGoogle Scholar
Spell, T. L. & McDougall, I. 2003. Characterization and calibration of 40Ar/39Ar dating standards. Chemical Geology 198, 189211.CrossRefGoogle Scholar
Suter, M., López-Martínez, M., Quintero-Legorreta, O. & Carrillo-Martínez, M. 2001. Quaternary intra-arc extension in the central Trans-Mexican volcanic belt. Geological Society of America Bulletin 113, 693703.2.0.CO;2>CrossRefGoogle Scholar
Valadez-Cabrera, S., Juárez-López, K., Cadoux, A. & Martínez Serrano, R. G. 2008. Caracterización mineralógica, petrográfica y geoquímica de lavas y xenolitos del estratovolcán Tláloc, Sierra Nevada, México. Reunión Anual UGM 2008, Puerto Vallarta, Jalisco, México. In Geos 28 (2), 162–3.Google Scholar
Vasquez-Sanchez, E. & Jaimes-Palomera, R. 1989. Geologia de la cuenca de Mexico. Geofisica Internacional 28, 133–90.CrossRefGoogle Scholar
Verma, S. P. 2000. Geochemistry of the subducting Cocos plate and the origin of subduction-unrelated mafic volcanism at the volcanic front of the central Mexican Volcanic Belt. In Cenozoic Tectonics and Volcanism of Mexico (eds Delgado-Granados, H., Aguirre-Diaz, G. J. & Stock, J. M.). pp. 195222. Geological Society of America, Special Paper no. 334.Google Scholar
Verma, S. P. 2002. Absence of Cocos plate subduction-related basic volcanism in southern Mexico: A unique case on Earth? Geology 30, 1095–8.Google Scholar
Vigouroux, N., Wallace, P. J. & Kent, A. J. R. 2008. Volatiles in high-K magmas from the western Trans-Mexican Volcanic Belt: evidence for fluid fluxing and extreme enrichment of the mantle wedge by subduction processes. Journal of Petrology 49, 1589–618.Google Scholar
Wallace, P. J. & Carmichael, I. S. E. 1999. Quaternary volcanism near the Valley of Mexico: implications for subduction zone magmatism and the effects of crustal thickness variations on primitive magma compositions. Contributions to Mineralogy and Petrology 135, 291314.Google Scholar
Yang, T., Grand, S. P., Wilson, D., Guzman-Speziale, M., Gomez-Gonzalez, J. M., Domínguez-Reyes, T. & Ni, J. 2009. Seismic structure beneath the Rivera subduction zone from finite-frequency seismic tomography. Journal of Geophysical Research 114, B01302, doi:10.1029/2008JB005830.Google Scholar
Supplementary material: File

Cadoux Supplementary Material

Cadoux Supplementary Appendix

Download Cadoux Supplementary Material(File)
File 7.4 MB