Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-17T18:16:50.796Z Has data issue: false hasContentIssue false

Three-dimensional stromatolites from Maastrichtian–Danian Yacoraite Formation, Argentina: modelling and assessing hydrodynamic controls on growth patterns

Published online by Cambridge University Press:  29 April 2021

Patricio Guillermo Villafañe*
Affiliation:
Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, PC C1425FQB, Ciudad Autónoma de Buenos Aires, Argentina Laboratorio de Investigaciones Microbiológicas en Lagunas Andinas (LAMIR), Avenida Belgrano y Pasaje Caseros, San Miguel de Tucumán, PC 4000, Tucumán, Argentina Instituto Superior de Correlación Geológica (INSUGEO, CONICET-Universidad Nacional de Tucumán), Avenida Presidente Peron s/n, Yerba Buena, PC 4107, Tucumán, Argentina
Carlos Cónsole-Gonella
Affiliation:
Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, PC C1425FQB, Ciudad Autónoma de Buenos Aires, Argentina Instituto Superior de Correlación Geológica (INSUGEO, CONICET-Universidad Nacional de Tucumán), Avenida Presidente Peron s/n, Yerba Buena, PC 4107, Tucumán, Argentina Institute of Paleontology, Hebei GEO University, 136 East Huai’ an Rd, Shijiazhuang, Hebei PC 050031, China
Paolo Citton
Affiliation:
Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, PC C1425FQB, Ciudad Autónoma de Buenos Aires, Argentina Instituto de Investigación en Paleobiología y Geología (IIPG, CONICET-UNRN), Avenida Roca 1242, General Roca, PC R8332, Río Negro, Argentina
Ignacio Díaz-Martínez
Affiliation:
Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, PC C1425FQB, Ciudad Autónoma de Buenos Aires, Argentina Instituto de Investigación en Paleobiología y Geología (IIPG, CONICET-UNRN), Avenida Roca 1242, General Roca, PC R8332, Río Negro, Argentina
Silvina de Valais
Affiliation:
Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, PC C1425FQB, Ciudad Autónoma de Buenos Aires, Argentina Instituto de Investigación en Paleobiología y Geología (IIPG, CONICET-UNRN), Avenida Roca 1242, General Roca, PC R8332, Río Negro, Argentina
*
Author for correspondence: Patricio Guillermo Villafañe, Email: pgvillafan@gmail.com

Abstract

Stromatolites are biogenic sedimentary structures formed by the interplay of biological (microbial composition) and environmental factors (local hydrodynamic conditions, clastic input and/or water chemistry). Well-preserved, three-dimensional (3D) fossil stromatolites are key to assessing the environmental factors controlling their growth and resulting morphology in space and time. Here, we report the detailed analysis of well-exposed, highly informative stromatolite build-ups from a single stratigraphic horizon within the Maastrichtian–Danian Yacoraite Formation (Argentina). This study focuses on the analysis of depositional processes driving intertidal to shallow subtidal stromatolites. Overall depositional architecture, external morphology and internal arrangement (mega, macro, meso and microstructures) of stromatolite build-ups were analysed and combined with 3D photogrammetric models, allowing us to decipher the links between stromatolite structure and tidal dynamics. Results suggest that external morphology and architecture of elongated and parallel clusters grew under the influence of run-off channels. The internal morphology exhibits columnar structures where the space between columns is interpreted as recharge or discharge channels. This work supports the theory that stromatolites can be used as a high-resolution tool in the assessment of water dynamics, and provides a new methodological approach and data for the dynamic reconstruction of intertidal stromatolite systems through the geological record.

Type
Original Article
Copyright
© The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Acosta, P, García Hernández, M & Checa, A (1988) Biohermos de esponjas y estromatolitos en la secuencia transgresiva oxfordiense de la Sierra de Cazorla. Geogaceta 5, 3639.Google Scholar
Ahr, WM, Mancini, EA and Parcell, WC (2011) Pore characteristics in microbial carbonate reservoirs. AAPG Search and Discovery Article 30167, 1013.Google Scholar
Aitken, JD (1967) Classification and environmental significance of cryptalgal limestones and dolomites, with illustrations from the Cambrian and Ordovician of southwestern Alberta. Journal of Sedimentary Petrology 37, 1163–78.10.1306/74D7185C-2B21-11D7-8648000102C1865DCrossRefGoogle Scholar
Allwood, AC, Walter, MR, Kamber, BS, Marsahll, CP and Burch, IW (2006) Stromatolite reef from the Early Archaean era of Australia. Nature 441, 714–8.CrossRefGoogle Scholar
Alonso, FJ, Esbert, RM and Ordaz, J (1987) Caracterización del sistema poroso de calizas y dolomias. Boletín Geológico y Minero 98, 226–37.Google Scholar
Altermann, W (2008) Accretion, trapping and binding of sediment in Archean stromatolites-morphological expression of the antiquity of life. Space Science Reviews 135, 5579.CrossRefGoogle Scholar
Altermann, W, Kazmierczak, J, Oren, A and Wright, DT (2006) Cyanobacterial calcification and its rock-building potential during 3.5 billion years of Earth history. Geobiology 4, 147–66.CrossRefGoogle Scholar
Andres, MS and Reid, RP (2006) Growth morphologies of modern marine stromatolites: a case study from Highborne Cay, Bahamas. Sedimentary Geology 185, 319–32.CrossRefGoogle Scholar
Arenas, C and Pomar, L (2010) Microbial deposits in upper Miocene carbonates, Mallorca, Spain. Palaeogeography, Palaeoclimatology, Palaeoecology 297, 465–85.CrossRefGoogle Scholar
Bergman, KL, Westphal, H, Janson, X, Poiriez, A and Eberli, GP (2010) Controlling parameters on facies geometries of the Bahamas, an isolated carbonate platform environment. In Carbonate Depositional Systems: Assessing Dimensions and Controlling Parameters (eds Westphal, H, Riegl, B and Eberti, GP), pp. 580. Dordrecht: Springer.CrossRefGoogle Scholar
Brackebusch, L (1883) Estudios sobre la Formación Petrolífera de Jujuy. Boletín de la Academia Nacional de Ciencias de Córdoba 5, 150.Google Scholar
Bunevich, RB, Borghi, L, Gabaglia, GP, Terra, GJ, Freire, EB, Lykawka, R and Fragoso, DG (2017) Microbialitos da Sequência Balbuena IV (Daniano), Bacia de Salta, Argentina: caracterização de intrabioarquiteturas e de microciclos. Pesquisas em Geociências 44, 177202.CrossRefGoogle Scholar
Carignano, AP and Ballent, S (2009) Microfósiles (Foraminifera, Ostracoda) y su respuesta a las variaciones paleoambientales. Un ejemplo en la Formación Allen (Cretácico Superior), cuenca Neuquina, Argentina. Ameghiniana 46, 307–20.Google Scholar
Cevallos-Ferriz, S and Werber, R (1980) Arquitectura, estructura y ambiente de depósito de algunos estromatolitos del Precámbrico sedimentario de Caborca, Sonora. Revista Mexicana de Ciencias Geológicas 4, 97103.Google Scholar
Chatalov, A (2009) Primary and secondary fenestral porosity in Middle Triassic subtidal grainstones from the Belogradchik strip, NW Bulgaria: implications for unconformity-related diagenesis. Comptes rendus de l’Académie bulgare des Sciences 62, 8596.Google Scholar
Choquette, PW and Pray, LC (1970) Geologic nomenclature and classification of porosity in sedimentary carbonates. American Association of Petroleum Geologists Bulletin 54, 207–50.Google Scholar
Clarke, EC and Teichert, C (1946) Algal structures in a Western Australian salt lake. American Journal of Science 224, 271–6.CrossRefGoogle Scholar
Cohen, AS, Talbot, MR, Awramik, SM, Dettman, DL and Abell, P (1997) Lake level and paleoenvironmental history of Lake Tanganyika, Africa, as inferred from late Holocene and modern stromatolites. Geological Society of American Bulletin 109, 444–60.2.3.CO;2>CrossRefGoogle Scholar
Cónsole-Gonella, C, de Valais, S, Sánchez, MC and Marquillas, R (2012) Nuevo registro de huellas de vertebrados en la Formación Yacoraite (Mastrichtiano-Daniano), Maimará, Cordillera Oriental argentina. Ameghiniana 49, R141.Google Scholar
Cónsole-Gonella, C, de Valais, S, Marquillas, RA and Sánchez, MC (2017) The Maastrichtian–Danian Maimará tracksite (Yacoraite Formation, Salta Group), Quebrada de Humahuaca, Argentina: environments and ichnofacies implications. Palaeogeography, Palaeoclimatology, Palaeoecology 468, 327–50.CrossRefGoogle Scholar
Cónsole-Gonella, C, Díaz-Martínez, I, Citton, P and de Valais, S (2021) New record of Late Cretaceous vertebrate tracks from the Yacoraite Formation (Juella, Quebrada de Humahuaca, northwestern Argentina): aerial drone survey, preservation and sedimentary context. Journal of South American Earth Sciences 107, 103116, https://doi.org/10.1016/j.jsames.2020.103116.CrossRefGoogle Scholar
Cónsole-Gonella, C and Marquillas, RA (2014) Bioclaustration trace fossils in epeiric shallow marine stromatolites: the Cretaceous-Paleogene Yacoraite Formation, Northwestern Argentina. Lethaia 47, 107–19.CrossRefGoogle Scholar
Cooper, JAG, Smith, AM and Arnscheidt, J (2013) Contemporary stromatolite formation in high intertidal rock pools, Giant’s Causeway, Northern Ireland: preliminary observations. Journal of Coastal Research 65, 1675–80.CrossRefGoogle Scholar
Cumings, ER (1932) Reefs or bioherms? Bulletin of the Geological Society of America 43, 331–52.CrossRefGoogle Scholar
d’Orbigny, A (1842) Voyage dans l’Amérique méridionale. Paléontologie 10, 188.Google Scholar
Davaud, E, Strasser, A and Jedoui, Y (1994) Stromatolite and serpulid bioherms in a Holocene restricted lagoon (Sabkha El Melah, southeastern Tunisia). Phanerozoic Stromatolites 2, 131–51.CrossRefGoogle Scholar
Deschamps, R, Rohais, S, Hamon, Y and Gasparrini, M (2020) Dynamic of a lacustrine sedimentary system during late rifting at the Cretaceous-Palaeocene transition: Example of the Yacoraite Formation, Salta Basin, Argentina. The Depositional Record 6, 490523.CrossRefGoogle Scholar
Díaz-Martínez, I, de Valais, S and Cónsole-Gonella, C (2016) First evidence of Hadrosauropodus in Gondwana (Yacoraite Formation, Maastrichtian-Danian), northwestern Argentina. Journal of African Earth Sciences 122, 7987.CrossRefGoogle Scholar
Dill, RF, Shinn, EA, Jones, AT, Kelly, K and Steinen, RP (1986) Giant subtidal stromatolites forming in normal salinity waters. Nature 324, 5558.CrossRefGoogle Scholar
Dobberschütz, S, Nielsen, MR, Sand, KK, Civioci, R, Bovet, N, Stipp, SLS and Andersson, MP (2018) The mechanisms of crystal growth inhibition by organic and inorganic inhibitors. Nature Communications 9, 16.CrossRefGoogle ScholarPubMed
Dupraz, C, Pattisina, R and Verrecchia, EP (2006) Translation of energy into morphology: simulation of stromatolite morphospace using a stochastic model. Sedimentary Geology 185, 185203.CrossRefGoogle Scholar
Dupraz, C, Reid, RP, Braissant, O, Decho, AW, Norman, RS and Visscher, PT (2009) Processes of carbonate precipitation in modern microbial mats. Earth-Science Reviews 96, 141–62.CrossRefGoogle Scholar
Eckman, JE, Andres, MS, Marinelli, RL, Bowlin, E, Reid, RP, Aspden, RJ and Paterson, DM (2008) Wave and sediment dynamics along a shallow subtidal sandy beach inhabited by modern stromatolites. Geobiology 6, 2132.CrossRefGoogle Scholar
Edwards, MJK, Anderson, CR, Perissinotto, R and Rishworth, GM (2017) Macro- and meso-fabric structures of peritidal tufa stromatolites along the Eastern Cape coast of South Africa. Sedimentary Geology 359, 6275.CrossRefGoogle Scholar
Folk, RL (1959) Practical petrographic classification of limestones. AAPG Bulletin 43, 138.Google Scholar
Forbes, M, Vogwill, R and Onton, K (2010) A characterisation of the coastal tufa deposits of south-west Western Australia. Sedimentary Geology 232, 5265.CrossRefGoogle Scholar
Frakes, LA and Bolton, BR (1984) Origin of manganese giants: sea-level change and anoxic-oxic history. Geology 12, 8386.2.0.CO;2>CrossRefGoogle Scholar
Gebelein, CD (1969) Distribution, morphology, and accretion rate of recent subtidal algal stromatolites, Bermuda. Journal of Sedimentary Petrology 39, 4969.Google Scholar
Gebelein, CD (1976) Open marine subtidal and intertidal stromatolites (Florida, The Bahamas and Bermuda). In Stromatolites (ed Walter, WR), pp. 20, 381–8. Amsterdam: Elsevier.Google Scholar
Giuffre, AJ, Hamm, LM, Han, N, De Yoreo, JJ and Dove, PM (2013) Polysaccharide chemistry regulates kinetics of calcite nucleation through competition of interfacial energies. Proceedings of the National Academy of Sciences 110, 9261–6.CrossRefGoogle ScholarPubMed
Golubic, S (1976) Organisms that build stromatolites. In Stromatolites (ed Walter, WR), pp. 20, 113–26. Amsterdam: Elsevier.Google Scholar
Gomes, JPB, Bunevich, RB, Tonietto, SN, Alves, DB, Santos, JF and Whitaker, FF (2019) Climatic signals in lacustrine deposits of the Upper Yacoraite Formation, Western Argentina: evidence from clay minerals, analcime, dolomite and fibrous calcite. Sedimentology 67, 2282–309.CrossRefGoogle Scholar
Grey, K and Planavsky, NJ (2009) Microbialites of Lake Thetis, Cervantes, Western Australia: a field guide. Geological Survey of Western Australia, Government of Western Australia, Record 21 p.Google Scholar
Grotzinger, JP and Knoll, AH (1999) Stromatolites in Precambrian carbonates: evolutionary mileposts or environmental dipsticks? Annual Review of Earth and Planetary Sciences 27, 313–58.CrossRefGoogle ScholarPubMed
Hamon, Y, Rohais, S, Deschamps, R and Gasparrini, M (2012) Outcrop analogue of pre-salt microbial series from South Atlantic: the Yacoraite Fm, Salta rift system (NW Argentina). In Proceedings of the AAPG Hedberg Conference “Microbial Carbonate Reservoir Characterization”, 4–8 June 2012, Houston.Google Scholar
Hoffman, P (1973) Recent and ancient algal stromatolites: seventy years of pedagogic cross-pollination. In Evolving Concepts in Sedimentology (ed. Ginsburg, RN), pp. 178–91. Baltimore: John Hopkins University Press.Google Scholar
Hoffman, P (1976a) Environmental diversity of middle precambrian stromatolites. In Stromatolites (ed Walter, WR), pp. 20, 599611. Amsterdam: Elsevier.Google Scholar
Hoffman, P (1976b) Stromatolite morphogenesis in Shark Bay, Western Australia. In Stromatolites (ed Walter, WR), pp. 20, 261–71. Amsterdam: Elsevier.Google Scholar
Horodyski, RJ (1977) Lyngbya mats at Laguna Mormona, Baja California, Mexico; comparison with Proterozoic stromatolites. Journal of Sedimentary Research 47, 1305–20.Google Scholar
Jahnert, RJ and Collins, LB (2012) Characteristics, distribution and morphogenesis of subtidal microbial systems in Shark Bay, Australia. Marine Geology 306, 115–36.CrossRefGoogle Scholar
Kah, LC, Bartley, JK, Frank, TD and Lyons, TW (2006) Reconstructing sea-level change from the internal architecture of stromatolite reefs: an example from the Mesoproterozoic Sulky Formation, Dismal Lakes Group, arctic Canada. Canadian Journal of Earth Sciences 43, 653–69.CrossRefGoogle Scholar
Kendall, CC, Flood, P and Hopley, D (2011) Classification of carbonates. In Encyclopedia of Modern Coral Reefs (ed Hopley, D), pp. 193–8. Dordrecht: Springer, Encyclopedia of Earth Sciences Series.CrossRefGoogle Scholar
Li, Q and Jun, YS (2019) Salinity-induced reduction of interfacial energies and kinetic factors during calcium carbonate nucleation on quartz. The Journal of Physical Chemistry 123, 14319–26.Google Scholar
Logan, BW (1961) Cryptozoon and associate stromatolites from the Recent, Shark Bay, Western Australia. The Journal of Geology 69, 517–33.CrossRefGoogle Scholar
Logan, BW, Rezak, R and Ginsburg, RN (1964) Classification and environmental significance of algal stromatolites. The Journal of Geology 72, 6883.CrossRefGoogle Scholar
Mackey, TJ, Summer, DY, Hawes, I, Jungblut, AD and Andersen, DT (2015) Growth of modern branched columnar stromatolites in Lake Joyce, Antarctica. Geobiology 13, 373–90.CrossRefGoogle ScholarPubMed
Marquillas, RA (1984) La Formación Yacoraite (Cretácico Superior) en el río Juramento, Salta: Estratigrafía y ciclicidad. In IX Congreso Geológico Argentino, 5–9 November 1984, San Carlos de Bariloche, Argentina, 186–96. Asociación Geológica Argentina.Google Scholar
Marquillas, RA (1985) Estratigrafía, sedimentología y paleoambientes de la Formación Yacoraite (Cretácico superior) en el tramo austral de la cuenca, Norte Argentino. PhD thesis, Universidad Nacional de Salta. Published thesis.Google Scholar
Marquillas, RA, del Papa, C and Sabino, I (2005) Sedimentary aspects and paleoenvironmental evolution of a rift basin: Salta Group (Cretaceous-Paleogene), northwestern Argentina. International Journal of Earth Sciences 94, 94113.CrossRefGoogle Scholar
Marquillas, RA, del Papa, C, Sabino, I and Heredia, J (2003) Prospección del límite K/T en la cuenca del Noroeste, Argentina. Revista de la Asociación Geológica Argentina 58, 271–4.Google Scholar
Marquillas, RA and Salfity, JA (1989) Distribución regional de los miembros de la Formación Yacoraite (Cretácico Superior) en el noroeste argentino. In Simposio Cretácico de América Latina, International Geological Correlation Program-Project, 6–9 June 1989, Buenos Aires, Argentina, 253–72. Asociación Geológica Argentina.Google Scholar
Marquillas, RA and Salfity, JA (1994) Relaciones estratigráficas regionales de la Formación Yacoraite (Cretácico Superior), norte de la Argentina. In VII Congreso Geológico Chileno,17–21 October 1994, Concepción, Chile, 1, 479–83. Sociedad Geológica de Chile.Google Scholar
Marquillas, RA, Salfity, JA, Matthews, SJ, Matteini, M and Dantas, E (2011) U–Pb zircon age of the Yacoraite Formation and its significance to the Cretaceous–Tertiary boundary in the Salta Basin, Argentina. Cenozoic Geology of the Central Andes of Argentina 227–46.Google Scholar
Mata, SA, Harwood, CL, Corsetti, FA, Stork, NJ, Eilers, K, Berelson, WM and Spear, JR (2012) Influence of gas production and filament orientation on stromatolite microfabric. Palaios 27, 206–19.CrossRefGoogle Scholar
Mazzullo, SJ (2004) Overview of porosity evolution in carbonate reservoirs. Kansas Geological Society Bulletin 79, 119.Google Scholar
Monty, CL (1976) The origin and development of cryptalgal fabrics. In Stromatolites (ed Walter, WR), pp. 20, 193249. Amsterdam: Elsevier.Google Scholar
Moore, LS and Burne, RV (1994) The modern thrombolites of Lake Clifton, western Australia. In Phanerozoic stromatolites II (ed Casanova, J), pp. 329. Dordrecht: Springer.CrossRefGoogle Scholar
Moroni, AM (1984) Mtchedlishvilia saltenia n. sp. en sedimentitas del Grupo Salta, provincia de Salta. In 3er Congreso Argentino de Paleontología y Bioestratigrafía, 6–10 September 1984, Corrientes, Argentina, 129–39. Asociación Paleontológica Argentina and Universidad Nacional del Nordeste (Argentina).Google Scholar
Nehza, O and Woo, KS (2006) The effect of subaerial exposure on the morphology and microstructure of stromatolites in the Cretaceous Sinyangdong Formation, Gyeongsang Supergroup, Korea. Sedimentology 53, 1121–33.CrossRefGoogle Scholar
Palma, RM (1984) Características sedimentológicas y estratigráficas de las Formaciones en el límite Cretácico Superior-Terciario Inferior, en la Cuenca Salteña. PhD thesis, Universidad Nacional de Tucumán. Published thesis.Google Scholar
Palma, RM (1993) Petrología, ciclos sedimentarios y ambiente depositacional de la Formación Yacoraite (Cretácico Superior) en el río Corralito, Salta. Información Tecnológica 48, 233–40.Google Scholar
Perissinotto, R, Bornman, TG, Steyn, PP, Miranda, NA, Dorrington, RA, Matcher, GF and Peer, N (2014) Tufa stromatolite ecosystems on the South African south coast. South African Journal of Science 110, 18.CrossRefGoogle Scholar
Planavsky, N and Grey, K (2008) Stromatolite branching in the Neoproterozoic of the Centralian Superbasin, Australia: an investigation into sedimentary and microbial control of stromatolite morphology. Geobiology 6, 3345.Google ScholarPubMed
Pratt, BR and James, NP (1982) Cryptalgal-metazoan bioherms of early Ordovician age in the St George Group, western Newfoundland. Sedimentology 29, 543–69.CrossRefGoogle Scholar
Preiss, WV (1976) Basic field and laboratory methods for the study of stromatolites. In Stromatolites (ed Walter, WR), pp. 513. Amsterdam: Elseiver.CrossRefGoogle Scholar
Quattrocchio, M, Ruiz, L and Volkheimer, W (2000) Palynological zonation of the Paleogene of the Colorado and Salta Group basins, Argentina. Revista Española de Micropaleontología 32, 6178.Google Scholar
Reid, RP and Browne, KM (1991) Intertidal stromatolites in a fringing Holocene reef complex, Bahamas. Geology 19, 1518.2.3.CO;2>CrossRefGoogle Scholar
Reid, RP, James, NP, Macintyre, IG, Dupraz, CP and Burne, RV (2003) Shark Bay stromatolites: microfabrics and reinterpretation of origins. Facies 49, 299.CrossRefGoogle Scholar
Reid, RP, Visscher, PT, Decho, AW, Stolz, JF, Bebout, BM, Dupraz, C, Macintyre, IG, Paerl, HW, Pinckney, JL, Prufert Beboult, L, Steepe, TF and DesMarais, DJ (2000) The role of microbes in accretion, lamination and early lithification of modern marine stromatolites. Nature 406, 989–92.CrossRefGoogle ScholarPubMed
Reitner, J, Paul, J, Arp, G and Hause-Reitner, D (1996) Lake Thetis domal microbialites; a complex framework of calcified biofilms and organomicrites (Cervantes, Western Australia). In Global and Regional Controls on Biogenic Sedimentation I. Reef Evolution. Research Reports (eds Reitner, J, Neuweiler, F and Gunkel, F), pp. 8589. Göttingen: Göttinger Arbeiten zur Geologie und Paläontologie.Google Scholar
Reyes, FC (1972) Correlaciones en el Cretácico de la cuenca Andina de Bolivia, Perú y Chile. Revista Técnica YPFB 1, 101–44.Google Scholar
Riding, RE (2000) Microbial carbonates: the geological record of calcified bacterial algal mast and biofilms. Sedimentology 47, 179214.CrossRefGoogle Scholar
Riding, RE, Awramik, SM, Winsborough, BM, Griffin, KM and Dill, RF (1991) Bahamian giant stromatolites: microbial composition of surface mats. Geological Magazine 128, 227–34.CrossRefGoogle Scholar
Rohrlich, V (1974) Microstructure and microchemistry of Iron Ooliths. Mineralium Deposita 9, 133–42.CrossRefGoogle Scholar
Sabino, IF (2002) Geología del Subgrupo Pirgua (Cretácico) del noroeste argentino. PhD thesis, Universidad Nacional de Salta. Published thesis.Google Scholar
Salfity, JA (1980) Estratigrafía de la Formación Lecho (Cretácico) en la cuenca andina del norte argentino. PhD thesis, Universidad Nacional de Salta. Published thesis.Google Scholar
Salfity, JA and Marquillas, RA (1994) Tectonic and sedimentary evolution of the Cretaceous-Eocene Salta Group basin, Argentina. In Cretaceous Tectonics of the Andes (ed Salfity, JA), pp. 226315. Wiesbaden: Springer-Verlag.CrossRefGoogle Scholar
Sánchez, MC and Marquillas, RA (2010) Facies y ambientes del grupo Salta (Cretácico-Paleógeno) en Tumbaya, Quebrada de Humahuaca, provincia de Jujuy. Revista de la Asociación Geológica Argentina 67, 383–91.Google Scholar
Sanz-Montero, ME, Rodríguez-Aranda, JP and Calvo, JP (2005) Biomineralization in relation with endoevaporitic microbial communities. Miocene lake deposits of the Madrid Basin, Central Spain. Geophysical Research Abstract 7, 6874.Google Scholar
Sarjeant, WAS (1975) Plant trace fossils. In The Study of Trace Fossils: A Synthesis of Principles, Problems, and Producers in Ichnology (ed. Frey, RW), pp. 163–79. Amsterdam: Springer Science & Business Media.CrossRefGoogle Scholar
Schneider, J (1977) Carbonate construction and decomposition by epilithic and endolithic micro-organisms in salt-and freshwater. In Fossil Algae: Recent Results and Developments (ed Flügel, E), pp. 248–60. Amsterdam: Springer.CrossRefGoogle Scholar
Scholle, PA (1978) A Color Illustrated Guide to Carbonate Rock Constituents, Textures, Cements, and Porosities. Tulsa: American Association of Petroleum Geologists, 241 p.CrossRefGoogle Scholar
Schopf, JW (1996) Cyanobacteria: pioneers of the early Earth. Nova Hedwigia Beiheft 112, 1332.Google Scholar
Schwab, K (1984) Contribución al conocimiento del sector occidental de la cuenca sedimentaria del Grupo Salta (Cretácico-Eogénico) en el noroeste argentino. Actas 1, 586604.Google Scholar
Shapiro, RS (2000) A comment on the systematic confusion of thrombolites. Palaios 15, 166–9.2.0.CO;2>CrossRefGoogle Scholar
Shapiro, RS and Awramik, SM (2000) Microbialite morphostratigraphy as a tool for correlating Late Cambrian–Early Ordovician sequences. The Journal of Geology 108, 171–80.CrossRefGoogle ScholarPubMed
Shinn, EA (1968) Practical significance of birdseye structures in carbonate rocks. Journal of Sedimentary Petrology 38, 215–23.CrossRefGoogle Scholar
Shinn, EA (1983) Birdseyes, fenestrae, shrinkage pores, and loferites; a reevaluation. Journal of Sedimentary Research 53, 619–28.Google Scholar
Sial, AN, Ferreira, VP, Toselli, AJ, Parada, MA, Aceñolaza, FG, Pimentel, MM and Alonso, RN (2001) Carbon and oxygen isotope compositions of some Upper Cretaceous–Paleocene sequences in Argentina and Chile. International Geology Review 43, 892909.CrossRefGoogle Scholar
Suárez-González, P, Quijada, EI, Benito, MI and Mas, R (2016) Do stromatolites need tides to trap ooids? Insights from a Cretaceous system of coastal-wetlands. In Contributions to Modern and Ancient Tidal Sedimentology: Proceedings of the Tidalites 2012 Conference (eds Tessier, B and Reynaud, JY), pp. 161–91. USA: John Wiley & Sons.CrossRefGoogle Scholar
Suárez-González, P, Quijada, IE, Benito, MI, Mas, R, Merinero, R and Riding, R (2014) Origin and significance of lamination in Lower Cretaceous stromatolites and proposal for a quantitative approach. Sedimentary Geology 300, 1127.CrossRefGoogle Scholar
Suosaari, EP, Reid, RP, Araujo, TA, Playford, PE, Holley, DK, Mc Namara, KJ and Eberli, GP (2016a) Environmental pressures influencing living stromatolites in Hamelin Pool, Shark Bay, Western Australia. Palaios 31, 483–96.CrossRefGoogle Scholar
Suosaari, EP, Reid, RP, Playford, PE, Foster, JS, Stolz, JF, Casaburi, G and Eberli, GP (2016b) New multi-scale perspectives on the stromatolites of Shark Bay, Western Australia. Scientific Reports 6, 5770.CrossRefGoogle ScholarPubMed
Turner, JCM (1959) Estratigrafía del cordón de Escaya y de la sierra de Rinconada (Jujuy). Revista de la Asociación Geológica Argentina 13, 1539.Google Scholar
van de Vijsel, RC, van Belzen, J, Bouma, TJ, van der Wal, D, Cusseddu, V, Purkis, SJ, Rietkerk, M and van de Koppel, J (2020) Estuarine biofilm patterns: Modern analogues for Precambrian self-organization. Earth Surface Processes and Landforms 45, 1141–54.CrossRefGoogle Scholar
Vennin, E, Olivier, N, Brayard, A, Bour, I, Thomazo, C, Scarguel, G, Fara, E, Bylund, KG, Jenks, JF, Stephen, DA and Hofmann, R (2015) Microbial deposits in the aftermath of the end-Permian mass extinction: A diverging case from the Mineral Mountains (Utah, USA). Sedimentology 62, 753–92.CrossRefGoogle Scholar
von der Borch, CC (1974) Stratigraphy of stromatolites occurrences in carbonate lakes of the coorong lagoon area, South Australia. In Stromatolites (ed. Walter, MR), pp. 413–20. Amsterdam: Elsevier.Google Scholar
von der Borch, CC, Bolton, B and Warren, JK (1977) Environmental setting and microstructure of subfossil lithified stromatolites associated with evaporites, Marion Lake, South Australia. Sedimentology 24, 693708.CrossRefGoogle Scholar
Wacey, D, Urosevic, L, Saunders, M and George, AD (2018) Mineralisation of filamentous cyanobacteria in Lake Thetis stromatolites, Western Australia. Geobiology 16, 203–15.CrossRefGoogle ScholarPubMed
Supplementary material: File

Villafañe et al. supplementary material

Villafañe et al. supplementary material

Download Villafañe et al. supplementary material(File)
File 9.6 MB