Hostname: page-component-7c8c6479df-995ml Total loading time: 0 Render date: 2024-03-28T12:49:54.392Z Has data issue: false hasContentIssue false

Palaeomagnetism of Mesoproterozoic limestone and shale successions of some Purana basins in southern India

Published online by Cambridge University Press:  02 January 2015

MICHIEL O. DE KOCK*
Affiliation:
Department of Geology, University of Johannesburg, PO Box 524, Auckland Park 2006, Johannesburg, South Africa
NICOLAS J. BEUKES
Affiliation:
Department of Geology, University of Johannesburg, PO Box 524, Auckland Park 2006, Johannesburg, South Africa
JOYDIP MUKHOPADHYAY
Affiliation:
Department of Geology, University of Johannesburg, PO Box 524, Auckland Park 2006, Johannesburg, South Africa Department of Geology, Presidency University, 86/1 College Street, Kolkata 700 073, India
*
Author for correspondence: mdekock@uj.ac.za

Abstract

The ‘Purana’ basins were long considered Neoproterozoic basins until geochronology and palaeomagnestism showed parts of the Chattisgarth and lower Vindhyan basins to be a billion years older. Historically, the successions in the Chattisgarth Basin are correlated with similar successions in the Pranhita–Godavari and Indravati basins. In India, differentiating between early–late Mesoproterozoic rocks and those spanning the Mesoproterozoic–Neoproterozoic boundary is possible by comparing magnetic declination and inclination; palaeomagnetism is therefore a very useful correlation tool. Here we report a new Stenian-aged palaeopole (50.1°N, 67.4°E, radius of cone of 95% confidence A95 = 12.4°, precision K = 30.1) from carbonate and shale successions of the Pranhita–Godavari and Chattisgarth basins (the C+/– magnetization). In addition, an early diagenetic remagnetization (component A) was identified. No primary or early diagenetic magnetizations were identified from the Indravati Basin. Here, as well as in stratigraphically higher parts of the other two successions, widespread younger magnetic overprints were identified (B+ and B– magnetic components). Our C+/– palaeopole is constrained by palaeomagnetic stability field tests, is different from known 1.4 Ga and 1.0 Ga Indian palaeopoles, but similar to a 1.19 Ga palaeopole. Penganga Group (Pranhita–Godavari Basin) deposition was probably initiated at around 1.2 Ga. A similar palaeomagnetic signature confirms its correlation with the Raipur Group (Chattisgarth Basin), of which the deposition spans most of the Stenian period (c. 1.2–1.0 Ga). Sedimentation in these groups began significantly later than c. 1.4 and c. 1.6 Ga, as suggested by ages reported from below the Raipur and Penganga groups, respectively.

Type
Original Articles
Copyright
Copyright © Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Basu, A. 2009. Ediacaran fossils in Meso- and Paleoproterozoic rocks in peninsular India extend Darwin. Journal Geological Society of India 73, 528–36.CrossRefGoogle Scholar
Basu, A., Patranabis-Deb, S., Schieber, J. & Dhang, P. C. 2008. Stratigraphic position of the ~1000 Ma Sukhda Tuff (Chhattisgarth Supergroup, India) and the 500 Ma question. Precambrian Research 167, 383–88.Google Scholar
Bengtson, S., Beltvanova, V., Rasmussen, B. & Whitehouse, M. 2009. The controversial “Cambrian” fossils of the Vindhyan are real but more than a billion years older. PNAS 106 (19), 7729–34.Google Scholar
Bickford, M. E., Basu, A., Patranabis-Deb, S., Dhang, P. C. & Schieber, J. 2011. Depositional history of the Chattisgarth Basin, Central India: constraints from New SHRIMP zircon ages. The Journal of Geology 119 (1), 3350.CrossRefGoogle Scholar
Chaudhuri, A. K., Mukhopadhyay, J., Deb, S. P. & Chanda, S. K. 1999. The Neoproterozoic cratonic successions of Peninsular India. Gondwana Research 2 (2), 213–25.Google Scholar
Chaudhuri, A. K., Saha, D., Deb, G. K., Patranabis-Deb, S., Mukherjee, M. K. & Gosh, G. 2002. The Purana basins of southern cratonic province of India: a case for Mesoproterozoic fossil rifts. Gondwana Research 5 (1), 2333.CrossRefGoogle Scholar
Conrad, J. E., Hein, J. R., Chaudhuri, A. K., Patranabis-Deb, S., Mukhopadhyay, J., Deb, G. K. & Beukes, N. J. 2011. Constraints on the development of central India Proterozoic basins from 40Ar/39Ar analysis of glauconite/illite. GSA Bulletin 123 (1/2), 158–67.Google Scholar
Dawson, E. M. & Hargraves, R. B. 1994. Paleomagnetism of Precambrian dike swarms in the Harohalli area, south of Bangalore, India. Precambrian Research 69, 157–67.Google Scholar
Deb, G. K. 2003. Deformation pattern and evolution of the structures in the Penganga Group, the Pranhita-Godavari Valley, India: probable effects of Grenvillian movement on a Mesoproterozoic basin. Journal of Asian Earth Sciences 21, 567–77.Google Scholar
De Kock, M. O., Evans, D. A. D., Kirschvink, J. L., Beukes, N. J., Rose, E. & Hilburn, I. 2009. Paleomagnetism of a Neoarchean-Paleoproterozoic carbonate ramp and carbonate platform succession (Transvaal Supergroup) from surface outcrop and drill core, Griqualand West region, South Africa. Precambrian Research 169, 8099.Google Scholar
Goutham, M. R., Raghubabu, K., Prasad, C. V. R. K., Subba Rao, K. V. & Damodara Reddy, V. 2006. A Neoproterozoic geomagnetic field reversal from the Kurnool Group, India: Implications for stratigraphic correlation and formation of Gondwanaland. Journal Geological Society of India 67, 221–33.Google Scholar
Gregory, L. C., Meert, J. G., Pradhan, V., Pandit, M. K., Tamrat, E. & Malone, S. J. 2006. A paleomagnetic and geochronologic study of the Majhgawan kimberlite, India: implications for the age of the Upper Vindhyan Supergroup. Precambrian Research 149, 6575.CrossRefGoogle Scholar
Halls, H. C., Kumar, A., Srinivasan, R. & Hamilton, M. A. 2007. Paleomagnetism and U-Pb geochronology of easterly trending dykes in the Dharwar craton, India: feldspar clouding, radiating dyke swarms and the position of India at 2.37 Ga. Precambrian Research 155, 4768.Google Scholar
Idnurm, M., Giddings, J. W. & Plumb, K. A. 1995. Apparent polar wander and reversal stratigraphy of the Palaeo-Mesoproterozoic southeastern McArthur Basin, Australia. Precambrian Research 72, 141.CrossRefGoogle Scholar
Jones, C. H. 2002. User-driven integrated software lives: “Paleomag” Paleomagnetic analysis on the Macintosh TM. Computers and Geosciences 28, 1145–51.Google Scholar
Kale, V. S. & Phansalkar, V. G. 1991. Purana basins of peninsular India: a review. Basin Research 3 (1), 136.Google Scholar
Kirschvink, J. L. 1980. The least-squares line and plane and the analysis of palaeomagnetic data. Geophysical Jounral of the Royal Astronomical Society 62, 699718.CrossRefGoogle Scholar
Kirschvink, J. L., Kopp, R. E., Raub, T. D., Baumgartner, C. T. & Holt, J. W. 2008. Rapid, precise, and high-sensitivity acquisition of paleomagnetic and rock-magentic data: development of a low-noise automatic sample changing system for superconducting rock magnetometers. Geochemistry, Geophysics and Geosystems 9, Q05Y01, doi: 10.1029/2007GC001856.Google Scholar
Kumar, A., Heaman, L. M. & Manikyamba, C. 2007. Mesoproterozoic kimberlites in south India: a possible link to ~1.1 Ga global magmatism. Precambrian Research 154, 192204.Google Scholar
Malone, S. J., Meert, J. G., Banerjee, S., Pandit, M. K., Tamrat, E., Kamenov, G. D., Pradhan, V. R. & Sohl, L. E. 2008. Paleomagnetism and detrital zircon geochronology of the Upper Vindhyan sequence, Son Valley and Rajastan, India: A ca. 1000 Ma closure age for the Purana Basins? Precambrian Research 164, 137–59.Google Scholar
McFadden, P. L. & McElhinny, M. W. 1990. Classification of the reversal test in palaeomagnetism. Geophysical Journal International 103, 725–29.CrossRefGoogle Scholar
Miller, D. M. & Hargraves, R. B. 1994. Paleomagnetism of some Indian kimberlites and lamproites. Precambrian Research 69, 259–67.Google Scholar
Mukhopadhyay, J., Chanda, S. K., Fukuoka, M. & Chaudhuri, A. K. 1996. Deep-water dolomites from the Proterozoic Penganga Group in the Pranhita-Godavari valley, Adrhra Pradesh, India. Journal of Sedimentary Research 66 (1), 223–30.Google Scholar
Patranabis-Deb, S., Bickford, M. E., Hill, B., Chaudhuri, A. K. & Basu, A. 2007. SHRIMP ages of zircon in the uppermost tuff in Chattisgarh Basin in Central India require ~500 Ma adjustment in Indian Proterozoic Stratigraphy. The Journal of Geology 115, 407–15.Google Scholar
Pisarevsky, S. A., Biswal, T. K., Wang, X.-C., De Waele, B., Ernst, R. E., Söderlund, U., Tait, J. A., Ratre, K., Singh, Y. K. & Cleve, M. 2013. Palaeomagnetic, geochronological and geochemical study of Mesoproterozoic Lakhna Dykes in the Bastar Craton, India: implications for the Meosproterozoic supercontinent. Lithos 174, 125–43.Google Scholar
Pradhan, V. R., Meert, J. G., Pandit, M. K., Kamenov, G., Gregory, L. C. & Malone, S. J. 2010. India's changing place in global Proterozoic reconstructions: a review of geochronologic constraints and paleomagnetic poles from the Dharwar, Bundelkhand and Marwar cratons. Journal of Geodynamics 50, 244–42.Google Scholar
Pradhan, V. R., Meert, J. G., Pandit, M. K., Kamenov, G. & Mondal, M. E. A. 2012. Paleomagnetic and geochronological studies of the mafic dyke swarms of Bundelkhand craton, central India: Implications for the rectonic evolution and paleogeographic reconstructions. Precambrian Research 198–199, 5176.Google Scholar
Pradhan, V. R., Pandit, M. K. & Meert, J. G. 2008. A cautionary note on the age of the paleomagnetic pole obtained from the Harohalli dyke swarms, Dharwar craton, southern India. In Indian Dykes (eds Srivastava, R. K., Sivaji, C. & Rao, N. V. C.), 339–52. New Delhi, India: Narosa Publishing House.Google Scholar
Radhakrishna, T. & Mathew, J. 1996. late Precambrian (850–800 Ma) palaeomagnetic pole from the south Indian shield from the Harohalli alkaline dykes: geotectonic implications for Gondwana reconstructions. Precambrian Research 80, 7787.Google Scholar
Rasmussen, B., Bose, P. K., Sarkar, S., Banerjee, S., Fletcher, I. R. & McNaughton, N. J. 2002. 1.6 Ga U-Pb zircon age for the Chorhat Sandstone, lower Vindhyan, India: possible implications for early evolution of animals. Geology 30 (2), 103–6.Google Scholar
Sahasrabudhe, P. W. & Mishra, D. C. 1966. Paleomagnetism of Vindhyan rocks of India. Bulletin of the National Geophysics Research Institute Hyderabad 4, 4955.Google Scholar
Shipunov, S. V., Muraviev, A. A. & Bazhenov, M. 1998. A new conglomerate test in palaeomagnetism. Geophysics Journal International 133, 721–25.CrossRefGoogle Scholar
Tauxe, L., Butler, R. F., Banerjee, S. & Van der Voo, R. 2009. Essentials of Paleomagnetism. Berkeley: University of California.Google Scholar
Tauxe, L., Kylstra, N. & Constable, C. 1991. Bootstrap statistics for paleomagnetic data. Journal of Geophysical Research 96, 11723–40.CrossRefGoogle Scholar
Trindade, R. I. F., D’Agrella-Filho, M. S., Babinski, M., Font, E. & Brito Neves, B. B. 2004. Paleomagnetism and geochronology of the Bebedouro cap carbonate: evidence for continental-scale Cambrian remagnetization in the São Francisco craton, Brazil. Precambrian Research 128, 83103.CrossRefGoogle Scholar
Trindade, R. I. F., Font, E., D’Agrella-Filho, M. S., Nogueira, A. C. R. & Riccomini, C. 2003. Low-latitude and multiple geomagnetic reversals in the Neoproterozoic Puga cap carbonate, Amazon craton. Terra Nova 15, 441–6.Google Scholar
Vandamme, D., Courtillot, V., Besse, J. & Montigny, R. 1991. Paleomagnetism and age determinations of the Deccan Traps (India): Results of a Nagpur-Bpmbay Traverse and review of earlier work. Reviews of Geophysics 29 (2), 159–90.Google Scholar
Watson, G. S. 1956. A test for randomness of directions. Monthly Notices of the Royal Astronomycal Society, Geophysical Supplement 7, 160–1.Google Scholar
Williams, S. E., Müller, R. D., Landgrebe, T. C. W. & Whittaker, J. M. 2012. An open-source software environment for visualizing and refining tectonic reconstructions using high-resolution geological and geophysical data sets. GSA Today 22 (4/5), 49.Google Scholar