Hostname: page-component-8448b6f56d-tj2md Total loading time: 0 Render date: 2024-04-19T23:41:36.969Z Has data issue: false hasContentIssue false

New constraints from zircon, monazite and uraninite dating on the commencement of sedimentation in the Cuddapah basin, India

Published online by Cambridge University Press:  04 April 2017

DEBIDARSANI SAHOO
Affiliation:
Department of Geology and Geophysics, Indian Institute of Technology, Kharagpur–721302, India
KAMAL LOCHAN PRUSETH*
Affiliation:
Department of Geology and Geophysics, Indian Institute of Technology, Kharagpur–721302, India
DEWASHISH UPADHYAY
Affiliation:
Department of Geology and Geophysics, Indian Institute of Technology, Kharagpur–721302, India
SAMEER RANJAN
Affiliation:
Department of Geology and Geophysics, Indian Institute of Technology, Kharagpur–721302, India
DIPAK C. PAL
Affiliation:
Department of Geological Sciences, Jadavpur University, Kolkata–700032, India
RAHUL BANERJEE
Affiliation:
Atomic Mineral Directorate for Exploration and Research, Department of Atomic Energy, India
SHEKHAR GUPTA
Affiliation:
Atomic Mineral Directorate for Exploration and Research, Department of Atomic Energy, India
*
Author for correspondence: pruseth@gg.iitkgp.ernet.in

Abstract

The Cuddapah basin in southern India, consisting of the Palnad, Srisailam, Kurnool and Papaghni sub-basins, contains unmetamorphosed and undeformed sediments deposited during a long span of time in the Proterozoic. In the absence of robust age constraints, there is considerable confusion regarding the relative timing of sedimentation in these sub-basins. In this study, U–Pb isotopic dating of zircon and U–Th–Pbtotal dating of monazite and uraninite from the gritty quartzite that supposedly belongs to the formation Banganapalle Quartzite have been used to constrain the beginning of sedimentation in the Palnad sub-basin. Magmatic and detrital zircons recording an age of 2.53 Ga indicate that the sediments were derived from the granitic basement or similar sources and were deposited after 2.53 Ga. Hydrothermally altered zircons both in the basement and the cover provide concordant ages of 2.32 and 2.12 Ga and date two major hydrothermal events. Thus, the gritty quartzite must have been deposited sometime between 2.53 and 2.12 Ga and represents the earliest sediments in the Cuddapah basin. Monazite and uraninite give a wide spectrum of ages between 2.5 Ga and 150 Ma, which indicates several pulses of hydrothermal activity over a considerable time span, both in the basement granite and the overlying quartzite. The new age constraints suggest that the gritty quartzite may be stratigraphically equivalent to the Gulcheru Quartzite that is the oldest unit in the Cuddapah basin, and that a sedimentary/erosional hiatus exists above it.

Type
Original Article
Copyright
Copyright © Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anand, R., Balakrishnan, S., Kooijman, E. & Mezger, K. 2014. Neoarchean crustal growth by accretionary processes: evidence from combined zircon-titanite U-Pb isotope studies on granitoid rocks around the Hutti greenstone belt, Eastern Dharwar Craton, India. Journal of Asian Earth Science 79, 7285.Google Scholar
Azmi, R. J. 1998. Discovery of Lower Cambrian small shelly fossils and brachiopods from the Lower Vindhyan of Son Valley, Central India. Journal of the Geological Society of India 52, 381–9.Google Scholar
Azmi, R. J., Joshi, D., Tewari, B. N., Joshi, M. N., Mohan, K. & Srivastava, S. S. 2006. Age of the Vindhyan Supergroup of Central India: an exposition of biochronology vs radiochronology. In Micropaleontology: Application in Stratigraphy and Paleoceanography (ed. Sinha, D. K.), pp. 2962. New Delhi: Narosa Publishing HouseGoogle Scholar
Azmi, R. J., Joshi, D., Tiwari, B. N., Joshi, M. N. & Srivastava, S. S. 2008. A synoptic view on the current discordant geo-and biochronological ages of the Vindhyan Supergroup, central India. Himalayan Geology 29, 177–91.Google Scholar
Babu, E. V. S. S. K., Griffin, W. L., Mukherjee, A., O'Reilly, S. Y. & Belousova, E. A. 2008. Combined U–Pb and Lu–Hf analysis of megacrystic zircons from the Kalyandurg-4 kimberlite pipe, S. India: implications for the emplacement age and Hf isotopic composition of the cratonic mantle. 9th International Kimberlite Conference Extended Abstract No. 9IKC-A-00142Google Scholar
Bengtson, S., Belivanova, V., Rasumussen, B. & Whitehouse, M. 2009. The controversial “Cambrian” fossils of the Vindhyan are real but more than a billion years older. Proceedings of the National Academy of Sciences of the United States of America 106 (19), 7729–34.Google Scholar
Bickford, M. E., Basu, A., Patranabis-Deb, S., Dhang, P. C. & Schiber, J. 2011. Depositional history of the Chhattisgarh basin, central India: constraints from new SHRIMP zircon ages. Journal of Geology 119, 3350.Google Scholar
Bickford, M. E., Saha, D., Schieber, J., Kamenov, G., Russell, A. & Basu, A. 2013. New U-Pb ages of zircons in the Owk Shale (Kurnool Group) with reflections on Proterozoic porcellanites in India. Journal of the Geological Society of India 82, 207–16.Google Scholar
Chakraborty, P. P., Das, P., Saha, S., Das, K. R., Mishra, S. & Paul, P. 2012. Microbial mat related structures (MRS) from Mesoproterozoic Chhatisgarh and Khariar basins, Central India and their bearing on shallow marine sedimentation. Episodes 35, 513‒23.Google Scholar
Chalapathi Rao, N. V., Dongre, A. N., Kamde, G., Srivastava, R. K., Sridhar, M. & Kaminsky, F. E. 2010. Petrology, geochemistry and genesis of newly discovered Mesoproterozoic highly magnesian, calcite-rich kimberlites from Siddanpalli, Eastern Dharwar Craton, Southern India: products of subduction-related magmatic sources? Mineralogy and Petrology 98, 313–28.Google Scholar
Chalapathi Rao, N. V., Miller, J. A., Gibson, S. A., Pyle, D. M. & Madhavan, V. 1999. Precise 40Ar/39Ar dating of Kotakonda kimberlite and Chelima lamproite, India: implication to the timing of mafic dyke swarm activity in the Eastern Dhawar craton. Journal of the Geological Society of India 53, 425–32.Google Scholar
Chalapathi Rao, N. V., Miller, J. A., Pyle, D. M. & Madhavan, V. 1996. New Proterozoic K-Ar ages for some kimberlites and lamproites from the Cuddapah Basin and Dharwar Craton, south India: evidence for non-contemporaneous emplacement. Precambrian Research 79, 363–9.Google Scholar
Chalapathi Rao, N. V., Wu, F.-Y., Mitchell, R. H., Li, Q.-L. & Lehmann, B. 2013. Mesoproterozoic U–Pb ages, trace element and Sr–Nd isotopic composition of perovskite from kimberlites of the Eastern Dharwar craton, southern India: distinct mantle sources and a widespread 1.1 Ga tectonomagmatic event. Chemical Geology 353, 4864.Google Scholar
Chaudhuri, A. K., Mukhopadhyay, J., Patranabis Deb, S. & Chanda, S. K. 1999. The Neoproterozoic cratonic successions of peninsular India. Gondwana Research 2, 213–25.Google Scholar
Chaudhuri, A. K., Saha, D., Deb, G. K., Deb, S. P., Mukherjee, M. K. & Ghosh, G. 2002. The Purana basins of southern cratonic province of India – a case for Mesoproterozoic fossil rifts. Gondwana Research 5, 2333.Google Scholar
Collins, A. S., Patranabis-Deb, S., Alexander, E., Bertram, C. N., Falster, G. M., Gore, R. J., Mackintosh, J., Dhang, P. C., Saha, D., Payne, J. L., Jourdan, F., Backé, G., Halverson, G. P. & Wade, B. P. 2015. Detrital mineral age, radiogenic isotopic stratigraphy and tectonic significance of the Cuddapah Basin, India. Gondwana Research 28, 1294–309.Google Scholar
Crawford, A. R. & Compston, W. 1973. The age of the Cuddapah and Kurnool systems, Southern India. Journal of the Geological Society of Australia 19, 453–64.Google Scholar
De, C. 2003. Possible organisms similar to Ediacaran forms from the Bhander Group, Vindhyan Supergroup, Late Neoproterozoic of India. Journal of Asian Earth Science 21, 387–95.Google Scholar
De, C. 2006. Ediacara fossil assemblage in the upper Vindhyans of Central India and its significance. Journal of Asian Earth Science 27, 660–86.Google Scholar
Demirer, K. 2012. U-Pb baddeleyite ages from mafic dyke swarms in Dharwar craton, India – links to an ancient supercontinent. Master's thesis, Lund University, Lund, Sweden. Published thesis.Google Scholar
Dongre, A., Chalapathi Rao, N. V. & Kamde, G. 2008. Limestone xenolith in Siddanpalli kimberlite, Gadwal granite-greenstone terrain, Eastern Dharwar craton, Southern India: remnant of Proterozoic Platformal cover sequence of Bhima/Kurnool age? Journal of Geology 116, 184–91.Google Scholar
French, J. E. & Heaman, L. M. 2010. Precise U-Pb dating of Proterozoic mafic dyke swarms of the Dharwar craton, India: implications for the existence of the Neoproterozoic supercraton Sclavia. Precambrian Research 183, 416–41.Google Scholar
French, J. E., Heaman, L. M., Chacko, T. & Srivastava, R. K. 2008. 1891–1883 Ma Southern Bastar-Cuddapah mafic igneous events, India: a newly recognized large igneous province. Precambrian Research 160, 308–22.Google Scholar
Geisler, T., Schaltegger, U. & Tomaschek, F. 2007. Re-equilibration of zircon in aqueous fluids and melts. Elements 3, 4350.Google Scholar
Gopalan, K., Kumar, A., Kumar, S. & Vijayagopal, B. 2013. Depositional history of the Upper Vindhyan succession, central India: time constraints from Pb-Pb isochron ages of its carbonate components. Precambrian Research 233, 108–17.Google Scholar
Goutham, M. R., Subbarao, K. V., Prasad, C. V. R. K., Piper, J. D. A. & Miggins, D. P. 2011. Proterozoic mafic dykes from the southern margin of the Cuddapah Basin, India: Part 2 – Paleomagnetism and Ar-Ar geochronology. In Dyke Swarms: Keys for Geodynamic Interpretation (ed. Srivastava, R. K.), pp. 7393.Google Scholar
Halls, H. C., Kumar, A., Srinivasan, R. & Hamilton, M. A. 2007. Paleomagnetism and U-Pb geochronology of easterly dykes in the Dharwar Craton, India: feldspar clouding, radiating dyke swarms and the position of India at 2.37 Ga. Precambrian Research 155, 47‒68.Google Scholar
Harley, S. L., Kelly, N. M. & Möller, A. 2007. Zircon behaviour and the thermal histories of mountain chains. Elements 3, 2530.Google Scholar
Hazarika, P., Pruseth, K. L. & Mishra, B. 2015. Neoarchean greenstone metamorphism in the Eastern Dharwar Craton, India: constraints from monazite U-Th-Pbtotal ages and PT pseudosection calculations. Journal of Geology 123, 429–61.Google Scholar
Hoskin, P. W. O. & Schaltegger, U. 2003. The composition of zircon and igneous and metamorphic petrogenesis. Reviews in Mineralogy and Geochemistry 53, 2762.Google Scholar
Jackson, S. E., Pearson, N. J., Griffin, W. L. & Belousova, E. A. 2004. The application of laser ablation–inductively coupled plasma–mass spectrometry (LA-ICP-MS) to in situ U–Pb zircon geochronology. Chemical Geology 211, 4769.Google Scholar
Jeyagopal, A. V., Deshpande, M. S. M., Gupta, S., Ramesh Babu, P. V., Umamaheswar, K. & Maithani, P. B. 2011. Uranium mineralization and association of carbonaceous matter in Koppunuru Area, Palnad sub-basin, Cuddapah basin, Andhra Pradesh. Indian Mineralogist 45, 100‒11.Google Scholar
Joshi, D., Azmi, R. J. & Srivastava, S. S. 2006. Earliest Cambrian calcareous skeletal algae from Tirohan Dolomite, Chitrakoot, Central India: a new age constraint for the Lower Vindhyan. Gondwana Geological Magazine 21, 7382.Google Scholar
Joy, S., Jelsma, H. A., Preston, R. F. & Kota, S. 2012. Geology and diamond provenance of the Proterozoic Banganapalle conglomerates, Kurnool Group, India. In Palaeoproterozoic of India (eds Mazumder, R. & Saha, D.), pp. 197218. Geological Society of London, Special Publication no. 352.Google Scholar
King, W. 1872. The Kudapah and Kurmul Formations in the Madras Presidency. Memoir of the Geological Survey of India, Calcutta 8 (Pt I), 346 pp.Google Scholar
Krishnan, M. S. 1964. The Upper Proterozoic of South India. Journal of the Indian Geological Science Association 4, 12.Google Scholar
Krogstad, E. J., Hanson, G. N. & Rajamani, V. 1991. U-Pb ages of zircon and sphene for two gneiss terranes adjacent to the Kolar Schist Belt, South India: evidence for separate crustal evolution histories. Journal of Geology 99, 801–16.Google Scholar
Krogstad, E. J., Hanson, G. N. & Rajamani, V. 1995. Sources of continental magmatism adjacent to the late Archean Kolar Suture zone, South India: distinct isotopic and elemental signature of two late Archean magmatic series. Contributions to Mineralogy and Petrology 122, 159–73.Google Scholar
Kumar, A., Gopalan, K., Rao, K. R. P. & Nayak, S. S. 2001. Rb-Sr age of kimberlites and lamproites from Eastern Dharwar Craton, South India. Journal of the Geological Society of India 58, 135–41.Google Scholar
Kumar, A., Hamilton, M. A. & Halls, H. C. 2012. A Paleoproterozoic giant radiating dyke swarm in the Dharwar Craton, southern India. Geochemistry, Geophysics, Geosystems 13, Q02011. doi:10.1029/2011GC003926.Google Scholar
Kumar, A., Heaman, L. M. & Manikeyamba, C. 2007. Mesoproterozoic kimberlites in south India: a possible link to ~1.1 Ga global magmatism. Precambrian Research 154, 192204.Google Scholar
Kumar, A., Padma Kumari, V. M., Dayal, A. M., Murthy, D. S. N. & Gopalan, K. 1993. Rb-Sr ages for Proterozoic kimberlites of India: evidence for contemporaneous emplacement. Precambrian Research 62, 227–37.Google Scholar
Kumar, S. & Pandey, S. K. 2008. Arumberia and associated fossils from the Neoproterozoic Maihar Sandstone, Vindhyan Supergroup, Central India. Journal of the Palaeontological Society of India 53, 8397.Google Scholar
Lakshminarayana, G., Bhattacharjee, S. & Ramanaidu, K. V. 2001. Sedimentation and stratigraphic framework in the Cuddapah basin. Geological Survey of India Special Publication 55, pp. 3158.Google Scholar
Ludwig, K. R. 2003. User's Manual for Isoplot 3.00, a Geochronological Toolkit for Microsoft Excel-4. Berkeley, CA: Berkeley Geochronology Center.Google Scholar
Mallikarjuna, R. J., Bhattacharji, S., Rao, M. N. & Hermes, O. D. 1995. 40Ar-39Ar ages and geochemical characteristics of dolerite dykes around the Proterozoic Cuddapah Basin, South India. Memoirs of the Geological Society of India 33, 307–28.Google Scholar
Mankiewicz, C. 1992. Obruchevella and other microfossils in the Burgess Shale: preservation and affinity. Journal of Paleontology 66, 717–29.Google Scholar
Medlicott, H. B. & Blanford, W. T. 1879. A Manual of the Geology of India. Pt. I and II. Calcutta: Government of India.Google Scholar
Meijerink, A. M. J., Rao, D. P. & Rupke, J. 1984. Stratigraphic and structural development of the Precambrian Cuddapah basin, SE India. Precambrian Research 26, 57104.Google Scholar
Nagaraja Rao, B. K., Rajurkar, S. T., Ramalingaswamy, G. & Ravindra Babu, B. 1987. Stratigraphy, structure and evolution of the Cuddapah Basin. Journal of the Geological Society of India 6, 3386.Google Scholar
Narayanswami, S. 1966. Tectonics of the Cuddapah basin. Journal of the Geological Society of India 7, 3350.Google Scholar
Newsome, L., Morris, K. & Lloyd, J. R. 2014. The biogeochemistry and bioremediation of uranium and other priority radionuclides. Chemical Geology 363, 164–84.Google Scholar
Osborne, I., Sherlock, S., Anand, M. & Argles, T. 2011. New Ar-Ar ages of southern Indian kimberlites and a lamproite and their geochemical evolution. Precambrian Research 189, 91103.Google Scholar
Patranabis-Deb, S., Bickford, M. E., Hill, B., Chaudhuri, A. K. & Basu, A. 2007. SHRIMP ages of zircon in the uppermost tuff in Chhattisgarh Basin in central India require up to 500 Ma adjustment in Indian Proterozoic stratigraphy. Journal of Geology 115, 407–15.Google Scholar
Pradhan, V. R., Pandit, M. K. & Meert, J. G. 2008. A cautionary note on the age of the paleomagnetic pole obtained from the Harohalli dyke warms, Dharwar craton, southern India. In Indian Dykes (eds Srivastava, R. K., Sivaji, C. & Chalapathi Rao, N. V.), pp. 339–52. New Delhi: Narosa Publishing House.Google Scholar
Prasad, B. R. & Rao, V. V. 2006. Deep seismic reflection study over the Vindhyans of Rajasthan: implications for geophysical setting of the basin. Journal of Earth System Science 115, 135–47.Google Scholar
Raha, P. K. 1987. Stromatolites and correlation of the Purana (middle to late Proterozoic) basins of peninsular India. In Purana Basins of Peninsular India (ed. Radhakrishna, B. P.), pp. 393–7. Memoirs of the Geological Society of India no. 6.Google Scholar
Rasmussen, B., Bose, P. K., Sarkar, S., Banerjee, S., Fletcher, I. R. & McNaughton, N. J. 2002. 1.6 Ga U-Pb zircon age for the Chorhat Sandstone, Lower Vindhyan, India: possible implications for early evolution of animals. Geology 30, 103–6.Google Scholar
Ray, J. S., Martin, M. W., Veizer, J. & Bowring, S. A. 2002. U-Pb zircon dating and Sr isotopic systematics of the Vindhyan Supergroup, India. Geology 3, 131–4.Google Scholar
Ray, J. S., Veizer, J. & Davis, W. J. 2003. C, O, Sr and Pb isotope systematics of carbonate sequences of the Vindhyan Supergroup, India: age, diagenesis, correlations and implications for global events. Precambrian Research 121, 103–21.Google Scholar
Saha, D. & Chakraborty, S. 2003. Deformation pattern in the Kurnool and Nallamalai Groups in the northeastern part (Palnad area) of the Cuddapah basin, south India and its implication on Rodinia/Gondwana tectonics. Gondwana Research 6, 573‒83.Google Scholar
Saha, D., Chakraborti, S. & Tripathy, V. 2010. Intracontinental thrusts and inclined transpression along eastern margin of the East Dharwar craton, India. Journal of the Geological Society of India 75, 323–37.Google Scholar
Saha, D. & Tripathy, V. 2012. Tuff beds in Kurnool subbasin, southern India and implications for felsic volcanism in Proterozoic intracratonic basins. Geoscience Frontiers 3, 429–44.Google Scholar
Sarangi, S., Gopalan, K. & Kumar, S. 2004. Pb-Pb age of the earliest megascopic, eukaryotic alga bearing Rohtas Formation, Vindhyan Supergroup, India: implications for Precambrian atmospheric oxygen evolution. Precambrian Research 121, 107–21.Google Scholar
Schopf, J. W. & Prasad, K. N. 1978. Microfossils in Collenia-like stromatolites from the Proterozoic Vempalle formation of the Cuddapah Basin, India. Precambrian Research 6, 347–66.Google Scholar
Sharma, M. & Shukla, Y. 2012. Occurrence of helically coiled microfossil obruchevella in the Owk Shale of the Kurnool Group and its significance. Journal of Earth System Science 3, 755–68.Google Scholar
Tripathy, V. & Saha, D. 2013. Plate margin paleostress variations and intracontinental deformations in the evolution of the Cuddapah basin through Proterozoic. Precambrian Research 235, 107–30.Google Scholar
Vadlamani, R., Hashmi, S., Chatterjee, C., Ji, W.-Q. & Wu, F.-Y. 2014. Initiation of the intra-cratonic Cuddapah basin: evidence from Paleoproterozoic (1995 Ma) anorogenic porphyritic granite in Eastern Dharwar Craton basement. Journal of Asian Earth Sciences 79, 235–45.Google Scholar
Walker, R. J., Shirey, S. B., Hanson, G. N., Rajamani, V. & Horan, M. F. 1989. Re-Os, Rb-Sr and O isotopic systematics of the Archean Kolar schist belt, Karnataka, India. Geochimica et Cosmochimica Acta 53, 3005–13.Google Scholar
Wiedenbeck, M., Alle, P., Corfu, F., Griffin, W. L., Meier, M., Oberli, F., Von Quart, A., Roddick, J. C. & Spiegel, W. 1995. Three natural zircon standards for U-Th-Pb, Lu-Th, trace element and REE analysis. Geostandards Newsletter 19, 123.Google Scholar
Supplementary material: File

Sahoo supplementary material S1

Supplementary Table

Download Sahoo supplementary material S1(File)
File 33.3 KB
Supplementary material: File

Sahoo supplementary material S2

Supplementary Table

Download Sahoo supplementary material S2(File)
File 41 KB