Hostname: page-component-8448b6f56d-gtxcr Total loading time: 0 Render date: 2024-04-19T15:54:16.869Z Has data issue: false hasContentIssue false

Mineral chemistry and thermobarometry of the staurolite-chloritoid schists from Poshtuk, NW Iran

Published online by Cambridge University Press:  17 May 2012

ADEL SAKI*
Affiliation:
Department of Geology, Shahid Chamran University of Ahvaz, Iran
MOHSSEN MOAZZEN
Affiliation:
Department of Geology, University of Tabriz, 51664, Tabriz, Iran
ROLAND OBERHÄNSLI
Affiliation:
Institute of Earth & Environmental Sciences, Potsdam University, Karl-Liebknecht-Strasse 24, 14476 Potsdam, Germany
*
Author for correspondence: adel_saki@scu.ac.ir

Abstract

The Poshtuk metapelitic rocks in northwestern Iran underwent two main phases of regional and contact metamorphism. Microstructures, textural features and field relations indicate that these rocks underwent a polymetamorphic history. The dominant metamorphic assemblage of the metapelites is garnet, staurolite, chloritoid, chlorite, muscovite and quartz, which grew mainly syntectonically during the later contact metamorphic event. Peak metamorphic conditions of this event took place at 580 °C and ~3–4 kbar, indicating that this event occurred under high-temperature and low-pressure conditions (HT/LP metamorphism), which reflects the high heat flow in this part of the crust. This event is mainly controlled by advective heat input through magmatic intrusions into all levels of the crust. These extensive Eocene metamorphic and magmatic activities can be associated with the early Alpine Orogeny, which resulted in this area from the convergence between the Arabian and Eurasian plates, and the Cenozoic closure of the Tethys oceanic tract(s).

Type
Original Articles
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agard, P., Omrani, J., Jolivet, L. & Mouthereau, F. 2005. Convergence history across Zagros (Iran): constraints from collisional and earlier deformation. International Journal of Earth Sciences 94, 401–19.Google Scholar
Alavi, M. 1994. Tectonics of the Zagros orogenic belt of Iran: new data and interpretations. Tectonophysics 229, 211–38.Google Scholar
Alavi, M. 2004. Regional stratigraphy of the Zagros Fold-Thrust belt of Iran and its proforeland evolution. American Journal of Science 304, 120.Google Scholar
Allen, M. B. & Armstrong, H. A. 2008. Arabia–Eurasia collision and the forcing of mid-Cenozoic global cooling. Palaeogeography, Palaeoclimatology, Palaeoecology 265, 252–8.Google Scholar
Babakhani, A. R. & Ghalamghash, J. 1990. Geological Map of Iran, 1:100,000 series sheet Takht-e-Soleiman. Geological Survey of Iran.Google Scholar
Berberian, M. & King, G. C. 1981. Towards a paleogeography and tectonic evolution of Iran. Canadian Journal of Earth Sciences 18, 210–65.Google Scholar
Dempster, T. J. & Tanner, P. W. G. 1997. The biotite isograd, Central Pyrenees: a deformation-controlled reaction. Journal of Metamorphic Geology 15, 531–84.Google Scholar
Droop, G. T. R. 1987. A general equation for estimating Fe3+ concentrations in ferromagnesian silicates and oxides from microprobe analyses using stoichiometric criteria. Mineral Magazine 51, 431–5.CrossRefGoogle Scholar
Eftekhar Nejad, J. 1980. Tectonic classification of Iran in relation to depositional basins. Journal of Iranian Petroleum Society 82, 1928 (in Persian).Google Scholar
Garcia, D., Coelho, J. & Perrin, M. 1991. Fractionation between TiO2 and Zr as a measure of sorting within shale and sandstone series (northern Portugal). European Journal of Mineralogy 3, 401–14.Google Scholar
Gilg, H. A., Boni, M., Balassone, G., Allen, C. R., Banks, D. & Moore, F. 2006. Marble-hosted sulfide ores in the Angouran Zn-(Pb–Ag) deposit, NW Iran: interaction of sedimentary brines with a metamorphic core complex. Mineralium Deposita 41, 116.Google Scholar
Grambling, J. 1990. Internally-consistent geothermometry and H2O barometry in metamorphic rocks: the example garnet-chlorite-quartz. Contribution to Mineralogy and Petrology 105, 617–28.CrossRefGoogle Scholar
Hajialioghli, R., Moazzen, M., Droop, G. T. R., Oberhänsli, R., Bousquet, R., Jahangiri, A. & Ziemann, M. 2007. Serpentine polymorphs and P-T evolution of metaperidotites and serpentinites in the Takab area, NW Iran. Mineralogical Magazine 71, 203–22.CrossRefGoogle Scholar
Häussinger, H., Okrusch, M. & Scheepers, D. 1993. Geochemistry of premetamorphic hydrothermal alteration of metasedimentary rocks associated with the Gorob massive sulfide prospect, Damara Orogen, Namibia. Economic Geology 88, 7290.Google Scholar
Herron, M. M. 1988. Geochemical classification of terrigenous sands and shales from core or log data. Journal of Sedimentary Petrology 58, 820–9.Google Scholar
Holland, T. J. B. & Powell, R. 1998. An internally consistent thermodynamic data set for phases of petrological interest. Journal of Metamorphic Geology 16, 309–43.Google Scholar
Jamshidibadr, M., Collins, A., Masoudi, F., Cox, G. & Mohajjel, M. 2011. The U-Pb age, geochemistry and tectonic significance of granitoids in The Soursat complex, Northwest Iran. Turkish Journal of Earth Sciences, published online 21 April 2011. doi: 10.3906/yer-1001-37.Google Scholar
Kretz, R. 1983. Symbols for rock forming minerals. American Mineralogy 68, 227–79.Google Scholar
Laird, J. 1988. Chlorites: metamorphic petrology. In Hydrous Phyllosilicates (ed. Bailey, S. W.), pp. 405–53. Reviews in Mineralogy 19. Washington, DC: Mineralogical Society of America.Google Scholar
Lambert, R. St. J. 1959. The mineralogy and metamorphism of the Moine schists of the Morar and Kroydart districts of Inverness-shire. Transactions of the Royal Society of Edinburgh 63, 553.Google Scholar
Mather, J. D. 1970. The biotite isograde and the lower greenschist facies in the Dalradian rocks of Scotland. Journal of Petrology 11, 253–75.CrossRefGoogle Scholar
Mcquarrie, N., Stock, J. M., Verdel, C. & Wernicke, B. P. 2003. Cenozoic evolution of Neo-tethys and implications for the causes of plate motions. Geophysical Research Letters 30, 2036, doi: 10.1029/2003GL017992, 4 pp.CrossRefGoogle Scholar
Mehrabi, B., Yardley, B. W. D. & Cann, J. R. 1999. Sediment-hosted disseminated gold mineralization at Zarshuran, NW Iran. Mineralium Deposita 34, 673–96.Google Scholar
Moazzen, M., Moayyed, M., Modjarrad, M. & Darvishi, E. 2004. Azna granitoid as an example of syn-collision S-type granitisation in Sanandaj–Sirjan metamorphic belt. Iran. Neues Jahrbuch für Mineralogie-Monatshefte 11, 489507.Google Scholar
Moazzen, M., Oberhänsli, R, Hajialioghli, R., Möller, A., Bousquet, R., Droop, G. T. R. & Jahangiri, A. 2009. Peak and post-peak P–T conditions and fluid composition for scapolite-clinopyroxene-garnet calc-silicate rocks from the Takab area, NW Iran. European Journal of Mineralogy 21, 149–62.CrossRefGoogle Scholar
Mohajjel, M., Fergusson, C. L. & Sahandi, M. R. 2003. Cretaceous–Tertiary convergence and continental collision, Sanandaj–Sirjan Zone, western Iran. Journal of Asian Earth Sciences 21, 397412.CrossRefGoogle Scholar
Nabavi, M. H. 1976. An Introduction to the Geology of Iran. Tehran: Geological Survey of Iran, 109 pp (in Persian).Google Scholar
Otaa, T., Terabayashi, M. & Katayama, I. 2004. Thermobaric structure and metamorphic evolution of the Iratsueclogite body in the Sanbagawa belt, central Shikoku, Japan. Lithos 73, 95126.CrossRefGoogle Scholar
Ramezani, J. & Tucker, R. D. 2003. The Saghand region, central Iran: U–Pb geochronology, petrogenesis and implications for Gondwana tectonics. American Journal of Science 303, 622–65.Google Scholar
Ricardo, A. J. & Martínez Catalán, R. 2003. Low-P metamorphism following a Barrovian-type evolution. Complex tectonic controls for a common transition, as deduced in the Mondoñedo thrust sheet (NW Iberian Massif). Tectonophysics 365,143–64.Google Scholar
Richards, S. W. & Collins, W. J. 2002. The Cooma Metamorphic Complex, a low-P, high-T (LPHT) regional aureole beneath the Murrumbidgee Batholith. Journal of Metamorphic Geology 20, 119–34.Google Scholar
Saad, N. A., Bouseil, Y. & Kalil, K. 1996. Alteration pattern in the Vmm Rugs gold mine area, Egypt. Acta Mineralogical-Petrographica XXXVII, 574.Google Scholar
Saki, A. 2010. Proto-Tethyan remnants in northwest Iran: geochemistry of the gneisses and metapelitic rocks. Gondwana Research 17, 704–14.CrossRefGoogle Scholar
Saki, A. 2011. Mineralogy, geochemistry and geodynamic setting of the Mahneshan granitoids, NW Iran. Geological Journal 45, 451–66.Google Scholar
Saki, A., Moazzen, M., Modjtahedi, M. & Oberähnsli, R. 2008 a. Phase relations and reaction histories of chloritoid-free and chloritoid-bearing metapelites from the Mahneshan area, NW Iran. Iranian Journal of Crystallography and Mineralogy 16, 622–40.Google Scholar
Saki, A., Moazzen, M., Modjtahedi, M. & Oberähnsli, R. 2008 b. Determination of P-T conditions of metamorphism of Mahneshan Complex, NW Iran. Iranian Journal of Geosciences 68, 8094.Google Scholar
Stockli, D. F., Hassanzadeh, J., Stockli, L. D., Axen, G., Walker, J. D. & Dewane, T. J. 2004. Structural and geochronological evidence for Oligo-Miocene intra-arc low-angle detachment faulting in the Takab-Zanjan area, NW Iran. Abstracts with Programs, Geological Society of America 36, 319.Google Scholar
Stocklin, J. & Setudenia, A. 1972. Lexique Stratigraphique International, Volume III, Asie. Paris: Centre National de la Récherche Scientifique.Google Scholar
Thomson, J. B. & Norton, S. A. 1968. Paleozoic regional metamorphism in New England and adjacent areas. In Studies of Appalachian Geology: Northern and Maritime (eds E-am, Zen, White, W. S., Hadley, J. B. & Thompson, J. B.), 319–37 pp. New York: John Wiley.Google Scholar
Treloar, P. J. & O'Brien, P. J. 1998. Introduction. In What Drives Metamorphism and Metamorphic Reactions? (eds Treloar, P. J. & O'Brien, P. J.), pp. 15. Geology Society of London, Special Publication no. 138.Google Scholar
Verdel, C., Wernicke, B. P., Ramezani, J., Hassanzadeh, J., Renne, P. R. & Spell, T. L. 2007. Geology and thermochronology of Tertiary Cordilleran-style metamorphic core complexes in the Saghand region of central Iran. Geological Society of America Bulletin 119, 961–77.Google Scholar
Vidal, O., Goffe, B., Bousquet, R. & Parra, T. 1999. Calibration and testing of an empiric chloritoid-chlorite Mg-Fe exchange thermometer and thermodynamic data for daphnite. Journal of Metamorphic Geology 17, 2539.Google Scholar
Wang, G. F., Banno, S. & Takeuchi, K. 1986. Reactions to define the biotite isograde in the ryoke metamorphic belt, Kii Peninsula, Japan. Contributions to Mineralogy and Petrology 93, 917.Google Scholar