Hostname: page-component-8448b6f56d-t5pn6 Total loading time: 0 Render date: 2024-04-16T16:25:46.271Z Has data issue: false hasContentIssue false

Carboniferous floras in siliciclastic rocks of Kashmir Himalaya, India and the evolutionary history of the Tethyan Basin

Published online by Cambridge University Press:  03 January 2013

KAMAL JEET SINGH
Affiliation:
Birbal Sahni Institute of Palaeobotany, 53 University Road, Lucknow-226007, (U.P.)India
RAJINDER SINGH
Affiliation:
Department of Geology and Mining, Jammu & Kashmir State, Jammu, India
CHRISTOPHER J. CLEAL*
Affiliation:
Department of Biodiversity & Systematic Biology, National Museum of Wales, Cathays Park, Cardiff CF10 3NP, UK
ANJU SAXENA
Affiliation:
Birbal Sahni Institute of Palaeobotany, 53 University Road, Lucknow-226007, (U.P.)India
SHAILA CHANDRA
Affiliation:
Flat Number 105, Beverly Park Apartment 422, New Hyderabad, Lucknow-226007, (U.P.)India
*
§Author for correspondence: chris.cleal@museumwales.ac.uk

Abstract

The Fenestella Shale Formation of Jammu and Kashmir Himalaya comprises latest Viséan or Serpukhovian siliciclastic deposits formed along the southern margins of the Palaeotethys Ocean. A sequence of shallowing upward and deepening upward units indicates changes from shoreface to offshore and deeper shelf conditions, probably controlled by eustatic changes in an otherwise passive depositional system. Some of the finer-grained, shallow marine deposits have yielded fossil floras dominated by sub-arborescent lycopsids (Sublepidodendron, Lepidodendropsis) sphenophytes (Archaeocalamites) and pteridophylls (Nothorhacopteris, Triphyllopteris). The assemblage compares with other Gondwanan floras of this age that have been assigned to the Paraca floral realm, and are taken to indicate relatively warm climatic conditions that existed just prior to the onset of the Carboniferous–Permian ice-age.

Type
Original Articles
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alleman, V. & Pfefferkorn, H. W. 1988. Licópodos de Paracas: significación geológica y paleo-climatológica. Boletín de la Sociedad Geológica del Peru 78, 131–6.Google Scholar
Alleman, V. & Pfefferkorn, H. W. 1997. Diversidad y reconstruccion de los licopodos Carboniferos de Paracas. In IX Congreso Peruano de Geología, Resúmenes Extendidos, pp 581–4. Lima: Sociedad Geológica del Peru.Google Scholar
Archangelsky, S. 1983. Nothorhacopteris, a new generic name for some Carboniferous monopinnate fronds of Gondwanaland (= Rhacopteris ovata auct. and Pseudorhacopteris Rigby 1973). Review of Palaeobotany and Palynology 38, 157–72.CrossRefGoogle Scholar
Archangelsky, S. & Arrondo, O. G. 1971. Palaeophytologia Kutziana III. 2. Estudio sobre el genero Botrychiopsis Kurtz (= Gondwanidium Gothan) del Carbonico y Permico Gondwanico. Ameghiniana 8, 189227.Google Scholar
Archangelsky, S., Azcuy, C. L. & Wagner, R. H. 1981. Three dwarf lycophytes from the Carboniferous of Argentina. Scripta Geologica 64, 135.Google Scholar
Azcuy, C. L. & Suárez-Soruco, R. 1993. Nothorhacopteris kellaybelenensis, una nueva species del Carbonífero inferior de Bolivia. Revista Técnica Yacimientos Petroliferos Fiscales Bolivianos 13/14, 173–79.Google Scholar
Balseiro, D., Rustán, J. J., Expeleta, M. & Vaccari, N. E. 2009. A new Serpukhovian (Mississippian) fossil flora from western Argentina: paleoclimatic, paleobiogeographic and stratigraphic implications. Palaeogeography, Palaeoclimatology, Palaeoecology 280, 517–31.Google Scholar
Berry, E. W. 1922. Carboniferous plants from Peru. The Johns Hopkins University Studies in Geology 4, 943. [The introductory part of the paper, but not the descriptions or illustrations, was reprinted in 1922 in the American Journal of Science, Fifth Series 3, 189–94.]Google Scholar
Bhargava, O. N. 1997. Carbonate build-ups in the Himalaya: their age, microfacies and palaeoenvironments. Journal of the Palaeontological Society of India 42, 1933.Google Scholar
Bhat, G. M., Singh, R. & Pandita, S. K. 1997. Turbidite to storm transition sedimentation during early Carboniferous Period, Kashmir Himalaya. Journal of the Geological Society of India 49, 545–58.Google Scholar
Castle, J. W. 2000. Recognition of facies, bounding surfaces, and stratigraphic patterns in foreland ramp successions: an example from the upper Devonian, Applachian Basin, U.S.A. Journal of Sedimentary Research 70, 896912.Google Scholar
Césari, S. N. 1987. Diplothmema bodenbenderi Kurtz nov. comb. (Pteridospermales?) del Carbonifero de Argentina. Ameghiniana 24, 263–9.Google Scholar
Césari, S. N., Limarino, C. O. & Gulbranson, E. L. 2011. An Upper Paleozoic bio-chronostratigraphic scheme for the western margin of Gondwana. Earth-Science Reviews 106, 149–60.CrossRefGoogle Scholar
Chaloner, W. G. 1967. Lycophyta. In Traité de Paléobotanique. Tome II (ed. Boureau, E.), pp. 435802. Paris: Masson et Cie.Google Scholar
Claoué-Long, J., Compston, W., Roberts, J. & Fanning, N. 1995. Two Carboniferous ages: a comparison of SHRIMP zircon dating with conventional zircon ages and 40Ar/39Ar analysis. In Geochronology, Time Scales and Stratigraphic Correlation (eds Berggren, W. A., Kent, D. V., Aubry, M.-P. & Hardenbol, J.), pp. 321. Society for Sedimentary Geology (SEPM), Special Publication 54.Google Scholar
Cleal, C. J. & Thomas, B. A. 2005. Palaeozoic tropical rainforests and their effect on global climates: is the past the key to the present? Geobiology 3, 1331.Google Scholar
Coquel, R., Lang, J. & Yahaya, M. 1995. Palynologie du Carbonifère du Nord Niger et de la plate-forme saharienne – implications stratigraphiques et paléogéographiques. Review of Palaeobotany and Palynology 89, 319–34.Google Scholar
Cotter, E. & Driese, S. G. 1998. Incised valley fills and other evidence of sea level fluctuations affecting deposition of the Catskill Formation (upper Devonian), Appalachian foreland basin, Pennsylvania. Journal of Sedimentary Research 68, 347–61.Google Scholar
Danzé-Corsin, P. 1960a. Sur les flores viséennes du Maroc. Bulletin de la Société Géologique de France, 7e Série 11, 590–9.Google Scholar
Danzé-Corsin, P. 1960b. La flore du Carbonifère inférieur du Jebel Bakach. Travaux de l'Institut Scientifique Chérifien, Série Géologie et Géographie Physique 8, 1552.Google Scholar
Danzé-Corsin, P. 1965. Flore du Carbonifère inferérieur du Djado et de l'Ennedi. Publications du Centre de la Recherche Scientifique Saharienne, Série Géologie 6, 185226, 4 pls.Google Scholar
Diaz Martinez, E. 1995. Regional correlations with Late Paleozoic events in Bolivia. In 2° Simpósio sobre Cronostratigrafia da Bacia do Paraná (Porto Alegre), Boletim de Resumos Expandidos, pp. 98100. Universidade Federal do Rio Grande do Sul.Google Scholar
Dolianiti, E. 1954. A flora do Carbonífero inferior de Teresina, Piauí. Boletim, Departemento Nacional da Produção Mineral, Divisão de Geologia e Mineralogia 148, 156.Google Scholar
Doubinger, J. & Alvarez-Ramis, C. 1980. Nota sobre la flora de la Formacion Ambo, Carbonifero Inferior del Peru. Actas II Congreso Argentino de Paleontologia y Biostratigrafia y I Congreso Latinoamericano de Paleontologia 4, 89101.Google Scholar
Erwin, D., Pfefferkorn, H. W. & Alleman, V. 1994. Early seed plants in the Southern Hemisphere: I. associated ovulate and microsporangiate organs from the Carboniferous of Peru. Review of Palaeobotany and Palynology 80, 1938.Google Scholar
Fielding, C. R., Frank, T. D., Birgenheier, L. P., Rygel, M. C., Jones, A. T. & Roberts, J. 2008. Stratigraphic imprint of the Late Palaeozoic Ice Age in eastern Australia: a record of alternating glacial and nonglacial climate regime. Journal of the Geological Society, London, 165, 129–40.CrossRefGoogle Scholar
Galloway, W. E. 2002. Palaeogeographic setting and depositional architecture of a sand dominated shelf depositional system, Miocene Utsira Formation, North Sea Basin. Journal of Sedimentary Research, 72, 476–90.CrossRefGoogle Scholar
Garzanti, E., Angiolini, L., Brunton, H., Sciunnach, D. & Balini, M. 1998. The Bashkirian “Fenestella Shales” and the Moscovian “Chaetetid Shales” of the Tethys Himilaya (South Tibet, Nepal, India). Journal of Asian Earth Sciences 16, 119–41.CrossRefGoogle Scholar
Geinitz, H. B. 1876. Über Rhätische Pflanzen und Thierreste in den argentinischen Provinzen La Rioja, San Juan und Mendoza. Palaeontographica Supplement 3 (2), 114.Google Scholar
Gothan, W. 1928. Bemerkungen zur Alt-Carbonflora von Perú, besonders von Paracas. Neues Jahrbuch für Mineralogie, Geologie und Paläontologie, Abteilung B 59, 292–9, pls 13–15.Google Scholar
Gothan, W. & Sahni, B. 1937. Fossil plants from the Po Series of Spiti (N.W. Himalayas). Records of the Geological Survey of India 72, 195206.Google Scholar
Grader, G., Díaz-Martinez, E., Davydov, V., Montañez, I., Tait, J. & Isaacson, P. 2007. Late Paleozoic stratigraphic framework in Bolivia: constraints from the warm water Cuevo Megasequence. In 4th European Meeting on the Palaeontology and Stratigraphy of Latin America (eds Díaz-Martinez, E. & Rábano, I.), pp. 181–8. Madrid: Instituto Geologico y Minero de España.Google Scholar
Grierson, J. D. & Banks, H. P. 1963. Lycopods of the Devonian of New York State. Palaeontographica Americana 4, 217–95, pls 32–42.Google Scholar
Guerra-Sommer, M. & Cazzulo-Klepzig, M. 1993. Biostratigraphy of the Southern Brazilian Neopalaeozoic Gondwana sequence: a preliminary palaeobotanical approach. Comptes Rendus, XII International Conference on the Carboniferous and Permian 2, 6172.Google Scholar
Gulbranson, E. L., Montañez, I. P., Schmitz, M. D., Limarino, C. O., Isbell, J. L., Marenssi, S. A. & Crowley, J.L. 2010. High-precision U-Pb calibration of Carboniferous glaciation and climate history, Paganzo Group, NW Argentina. Geological Society of America Bulletin 122, 1480–98.CrossRefGoogle Scholar
Harms, J. C., Southard, J. B. & Walker, R. G. 1975. Depositional environments as interpreted from primary sedimentary structures and stratification sequences. SEPM Short Course 2, 1161.Google Scholar
Hayden, H. H. 1904. The geology of Spiti, with parts of Bashahr and Rupshu. Memoirs of the Geological Survey of India 34, 1129, 18 pls.Google Scholar
Høeg, O. A., Bose, M. N. & Shukla, B. N. 1955. Some fossil plants from the Po Series of Spiti (N.W. Himalayas). The Palaeobotanist 4, 1013, pls 1–2.Google Scholar
Hunt, D. & Tucker, M. E. 1995. Stranded parasequences and the forced regressive wedge systems tract: deposition during base level fall. Sedimentary Geology 81, 19.Google Scholar
Iannuzzi, R., Díaz-Martínez, E. & Suárez-Soruco, R. 1999. Los elementos floristicos de la Formacion Siripaca (Grupo Ambo, Bolivia) y su contexto bioestratigrafico. Pesquisas 26, 2140.Google Scholar
Iannuzzi, R. & Pfefferkorn, H. W. 2002. A pre-glacial, warm-temperate floral belt in Gondwana (late Visean, Early Carboniferous). Palaios 17, 571–90.Google Scholar
Iannuzzi, R., Pfefferkorn, H. W., Díaz, E., Alleman, V. & Suárez-Soruco, R. 1997. Una flora Eocarbonifera de la Formacion Siripaca, Grupo Ambo, Bolivia y su correlacion con las floras peruanas (Flora Paracas). Sociedad Geológica del Perú, Vol. Esp. 1, 599602.Google Scholar
Iannuzzi, R., Pfefferkorn, H. W., Díaz-Martínez, E., Alleman, V. & Suárez-Soruco, R. 1998. La flora Eocarbonifera de la Formacion Siripaca (Grupo Ambo, Bolivia) y su correlacion con la flora de Paracas (Grupo Ambo, Peru). Boletín de la Sociedad Geológica del Perú 88, 3951.Google Scholar
Iannuzzi, R. & Rössler, O. 2000. Floristic migration in South America during the Carboniferous: phytogeographic and biostratigraphic implications. Palaeogeography, Palaeoclimatology, Palaeoecology 161, 7194.Google Scholar
Ito, M., Saito, T. & Someya, H. 2002. Tectonic control of facies architecture in Falling-stage deposits in a forearc basin: Upper Miocene Senhata Formation, Bosos Penninsul, Japan. Journal of Sedimentary Research 72, 491–9.Google Scholar
Jasper, A., Guerra-Sommer, M., Cazzulo-Klepzig, M. & Iannuzzi, R. 2007. Biostratigraphic and paleoclimatic significance of Botrychiopsis fronds in the Gonwana Realm. In Proceedings of the XVth International Congress on Carboniferous and Permian Stratigraphy. Utrecht, the Netherlands, 10–16 August 2003 (ed. Wong, Th. E.), pp. 379388. Amsterdam: Royal Netherlands Academy of Arts and Sciences.Google Scholar
Jongmans, W. J. 1940. Contribution to the flora of the Carboniferous of Egypt. Mededeelingen Geologisch Bureau voor het Mijngebied te Heerlen, Behoorende bij het Jaarverslag 1938/1939, 223–9.Google Scholar
Jongmans, W. J. 1954. The Carboniferous flora of Peru. Bulletin of the British Museum (Natural History), Geology Series 2, 189224.Google Scholar
Jongmans, W. J. & van der Heide, S. 1955. Flore et faune du Carbonifère inférieur de l’Égypt. Mededeelingen van de Geologische Stichting, Nieuwe Serie 8, 5975.Google Scholar
Kidston, R. 1923. Fossil plants of the Carboniferous rocks of Great Britain. Parts 14. Memoirs of the Geological Survey of Great Britain, Palaeontology 2, 1376.Google Scholar
Knaus, M. J. & Gillespie, W. H. 2001. Genselia compacta (Jongmans et al.) Knaus et Gillespie comb. nov: new insights into possible developmental pathways of early photosynthetic units. Palaeontographica, Abteilung B 256, 6994, pls 15.CrossRefGoogle Scholar
Kräusel, R. & Weyland, H. 1949. Pflanzenreste aus dem Devon. XIV. Gilboaphyton und die Protolepidophytales. Senckenbergiana 30, 129–62.Google Scholar
Kumar, G., Singh, G. & Srivastava, G. S. 1980. Palaeozoic stratigraphy of Kashmir Basin with special reference to Liddar Valley, Kashmir. In Abstracts of the Symposium ‘On Three Decades of Development in Palaeontology and Stratigraphy, December 10–12, 1980, Hyderabad’, p. 3. Calcutta: Geological Survey of India.Google Scholar
Leckie, P. A. & Walker, R. G. 1982. Storm and tide dominated shorelines in Cretaceous Moorsebar – Lower Gates interval outcrop equivalents of Deep Basin gas top in western Canada. Bulletin of the American Association of Petroleum Geologists 66, 138–57.Google Scholar
Lejal, A. 1968. Étude des Lepidosigillariaceae du Djardo (Sahara oriental). Palaeontographica, Abteilung B 121, 142–58.Google Scholar
Lejal, A. 1969. Étude des Sublepidodendraceae du Djardo (Sahara oriental). The Palaeobotanist 17, 137–51.Google Scholar
Lejal-Nicol, A. 1972. Contribution à l’étude de la flore paléozoique à Lycophytes de Libya et des Bassins du Djado et de Fort-Polignac (Illizi). Laboratoire de Paléobotanique de l'Université Paris Publication 4(1), 464 pp.Google Scholar
Lejal-Nicol, A. 1977. Sur la paleoflore du Carbonifère inférieur de la Libye. Bulletin de la Société d'Histoire Naturelle de l'Afrique du Nord 67, 225–42.Google Scholar
Lejal-Nicol, A. 1985. Megafloras. In The Carboniferous of the World. II. Australia, Indian Subcontinent, South Africa, South America, & North Africa (eds Wagner, R. H., Winkler Prins, C. F. & Granados, L. F.), pp. 386–91. Madrid: Instituto Geologico y Minero de España.Google Scholar
McNeill, J., Barrie, F. R., Burdet, H. M., Demoulin, V., Hawksworth, D. L., Marhold, J., Nicolson, D. H., Prado, J., Silva, P. C., Skog, J. E., Wiersema, J. H. & Turland, N. J. 2006. International Code of Botanical Nomenclature (Vienna Code). Ruggell: Gantner Verlag, 568 pp.Google Scholar
Mamay, S. H. 1992. Sphenopteridium and Telangiopsis in a Diplopteridium-like association from the Virgilian (Upper Pennsylvanian) of New Mexico. American Journal of Botany 79, 1092–101.Google Scholar
Mamay, S. H. & Bateman, R. M. 1991. Archaeocalamites lazarii, sp. nov: the range of Archaeocalamitaceae extended from the lowermost Pennsylvanian to the mid-Lower Permian. American Journal of Botany 78, 489–96.Google Scholar
Melo, J. H. G., Loboziak, S. & Streel, M. 1999. Latest Devonian to early Late Carboniferous biostratigraphy of northern Brazil: an update. Bulletin du Centre de Recherches Elf Exploration Production 22, 1333.Google Scholar
Meyen, S. V. 1977. Relation of Angara and Gondwana floras: a century of controversies. In IV International Gondwana Symposium, 1977, Calcutta, India, pp. 4550. Delhi: Hindustan Publishing Co.Google Scholar
Middlemiss, C. S. 1910. Revision of Silurian–Triassic sequence in Kashmir. Records of the Geological Survey of India 40, 206–60.Google Scholar
Morris, L. N. 1975. The Rhacopteris Flora in New South Wales. In Papers III Gondwana Geology (ed. Campbell, K. S. W.), pp. 99108. Canberra: National University Press.Google Scholar
Morris, L. N. 1980. Carboniferous floral succession in eastern Australia. In A Guide to the Sydney Basin (eds Herbert, C. & Helby, R.), pp 350–8. New South Wales Geological Survey, Bulletin 26.Google Scholar
Morris, L. N. 1985. The floral succession in eastern Australia. In The Carboniferous of the World. II. Australia, Indian Subcontinent, South Africa, South America, & North Africa (eds Wagner, R. H., Winkler Prins, C. F. & Granados, L. F.), pp. 118–23. Madrid: Instituto Geologico y Minero de España.Google Scholar
Pal, A. K. 1978. Lower Carboniferous plant fossils from Kashmir Himalaya. Himalayan Geology 8, 119–43.Google Scholar
Pal, A. K. & Chaloner, W. G. 1979. A Lower Carboniferous Lepidodendropsis flora in Kashmir. Nature 281, 295–97.Google Scholar
Pant, D. D. 1996. The biogeography of the late Paleozoic floras of India. Review of Palaeobotany and Palynology 90, 7998.Google Scholar
Pant, D. D. & Srivastava, P. C. 1995. Lower Carboniferous plants from Wallarama Spur of Punjab-Kashmir Himalaya. Palaeontographica, Abteilung B 235, 2349.Google Scholar
Pant, D. D. & Verma, B. K. 1964. The cuticular structure of Noeggerathiopsis Feistmantel and Cordaites Unger. Palaeontographica, Abteilung B 115, 2144.Google Scholar
Plint, A. G. 1988. Sharp based shoreface sequences and offshore bars in the Cardium Formation of the Alberta, their relationship to relative changes in sea level. In Sea Level Changes: An Integrated Approach (eds Wilgus, C. K. Hastings, B. S. Kendall, C. G. St. C. Posamentier, H. W. Ross, C. A. C.A., & , J. C. Van Wagoner, ), pp. 357–70. SEPM Special Publication 42.Google Scholar
Posamentier, H. W., Allen, G. P., James, D. P. & Tesson, M. 1992. Forced regressions in a sequence stratigraphic framework: concepts, examples and exploration significance. American Association of Petroleum Geologists Bulletin 76, 1687–709.Google Scholar
Posamentier, H. W., Jervey, M. T. & Allen, G. P. 1990. Aspects of sequence stratigraphy recent and ancient examples of forced regressions. American Association of Petroleum Geologists Bulletin 74, 1742.Google Scholar
Posamentier, H. W. & Vail, P. R. 1988. Eustatic controls on clastic deposition II – sequence and systems tract models. In Sea Level Changes: An Integrated Approach (eds Wilgus, C. K., Hastings, B. S., Kendall, C. G. St. C., Posamentier, H. W., Ross, C. A., C. A., & Van Wagoner, J. C.), pp. 125–54. SEPM Special Publication 42.Google Scholar
Proust, J. N., Chuvashov, B. I., Vennin, E. & Boisseau, T. 1998. Carbonate platform drowning in a foreland setting: the Mid-Carboniferous platform in Western Ural (Russia). Journal of Sedimentary Research 63, 1175–88.CrossRefGoogle Scholar
Read, C. B. 1938. The age of the Carboniferous strata of the Paracas Peninsula, Peru. Journal of the Washington Academy of Sciences 28, 396404.Google Scholar
Retallack, G. J. 1980a. Middle Triassic megafossil plants and trace fossils from Tank Gully, Canterbury, New Zealand. Journal of the Royal Society of New Zealand 10, 3163.Google Scholar
Retallack, G. J. 1980b. Late Carboniferous to Middle Triassic megafossil floras from the Sydney Basin. In A Guide to the Sydney Basin (eds Herbert, C. & Helby, R. J.), pp. 384430. Geological Survey of New South Wales, Bulletin 26.Google Scholar
Rigby, J. F. 1969. A reevaluation of the pre-Gondwana Carboniferous flora. Anais da Academia Brasileira de Ciéncias 41, 393413.Google Scholar
Rigby, J. F. 1973. Gondwanidium and other similar Upper Palaeozoic genera, and their stratrigraphic significance. Geological Survey Queensland, Palaeontological Papers 24, 110, 3 pls.Google Scholar
Rigby, J. F. 1979. Aspects concerning the identification and distribution of Late Palaeozoic plants in Gondwanaland. Geophytology 9, 2838.Google Scholar
Rigby, J. F. 1985. Aspects of Carboniferous palaeobotany in eastern Australia. Compte Rendu Dixième Congrès International de Stratigraphie et de Géologie du Carbonifère 4, 307–12.Google Scholar
Roberts, J., Claoué-Long, J., Jones, P. J. & Foster, C. B. 1995. SHRIMP zircon age control of Gondwana sequences in Late Carboniferous and Early Permian Australia. In Non-Biostratigraphical Methods of Dating and Correlation, (eds Dunay, R. E. & Hailwood, E. A.), pp. 145–74. Geological Society, London, Special Publication 89.Google Scholar
Rocha Campos, A. C. 1985. Central Andean area. In The Carboniferous of the World. II. Australia, Indian Subcontinent, South Africa, South America, & North Africa (eds Wagner, R. H., Winkler Prins, C. F., & Granados, L. F.), pp. 188200. Madrid: Instituto Geologico y Minero de España.Google Scholar
Rouvre, I. de 1984. Sur les lycophytes du Carbonifère inférieur du Niger. Review of Palaeobotany and Palynology 41, 177–98.Google Scholar
Rouvre, I. de 1988. Sur l’âge des flores paléozoïques nouvellement découvertes sur la bordure oust de l'Aïr (Niger). Compte rendu Académie des Sciences Paris 306, 1057–61.Google Scholar
Saito, Y. 1989. Classification of shelf sediments and their sedimentary facies in the storm dominated shelf: a review. Journal of Geography 98, 164–79 [In Japanese].Google Scholar
Sakagami, S., Sciunnach, D. & Garzanti, E. 2006. Late Paleozoic and Triassic bryozoans from the Tethys Himalaya (N India, Nepal and S Tibet). Facies, 52, 279–98.Google Scholar
Schweitzer, H.-J. 1965. Über Bergeria mimerensis und Protolepidodendropsis pulchra aus dem Devon Westspitzbergens. Palaeontographica, Abteilung B 115, 117–38.Google Scholar
Seward, A. C. 1912. Lower Gondwana plants from Golabgarh pass, Kashmir. Memoirs of the Geological Survey of India, Palaeontoligica Indica, New Series 4 (3), 110.Google Scholar
Singh, R. 1999. Early Carboniferous shallow marine storm influenced sedimentation, Tethys Himalaya, Kashmir. Journal of the Indian Association of Sedimentology 18, 95110.Google Scholar
Singh, R. 2002. Facies association and discontinuous surfaces in the Syringothyris Limestone Formation of Tethyan Margin of Gondwana, Kashmir. Gondwana Research 5, 683–99.Google Scholar
Singh, R. & Bhat, G. M. 2002. Depositional settings of Early Carboniferous siliciclastic – carbonate succession (Syringothris Limestone) of Kashmir Himalaya. Journal of the Geological Society of India 59, 431–45.Google Scholar
Singh, G., Maithy, P. K. & Bose, M. N. 1982. Upper Palaeozoic flora of Kashmir Himalaya. The Palaeobotanist 30, 185232.Google Scholar
Steinmann, G. 1929. Geologie von Perú. Heidelberg, xii + 448 pp., 9 pls.Google Scholar
Stur, D. 1875. Die Culm-Flora des mahrischschlesischen Dachschiefers. Abhandlungen der Kaiserlich-Königlichen Geologischen Reichsanstalt 8, 1106, pls 1–17.Google Scholar
Stur, D. 1877. Die Culm-Flora der Ostrauer und Waldenburger Schichten. Abhandlungen der Kaiserlich-Königlichen Geologischen Reichsanstalt 8, 107472, pls A–C, 18–44.Google Scholar
Thomas, B. A. 1980. Notes on Bothrodendron depereti Vaffier and a Sigillariostrobus with Tuberculatispotites brevispiculus megaspores. Argumenta Palaeobotanica 6, 157–64.Google Scholar
Thomas, B. A. & Meyen, S. V. 1984. A system of form-genera for the Upper Palaeozoic lepidophyte stems represented by compression-impression material. Review of Palaeobotany and Palynology 41, 273–81.Google Scholar
Tripathi, V. & Singh, G. 1985. Carboniferous flora of India and its contemporaneity in the world. Compte Rendu Dixième Congrès International de Stratigraphie et de Géologie du Carbonifère 4, 295306.Google Scholar
Walton, J. 1926. Contributions to the knowledge of Lower Carboniferous plants. Philosophical Transactions of the Royal Society of London, Series B 215, 201–24, pls 16–17.Google Scholar
Waterhouse, J. B. & Gupta, V. J. 1979. Early Carboniferous brachiopods from the Syringothyris Limestone and Fenestella Shales of Kashmir. Contributions to Himalayan Geology 1, 108–46.Google Scholar
White, M. E. 1988. Australia's Fossil Plants. New South Wales, Australia: Reed Books Pty Ltd, 144 pp.Google Scholar
Supplementary material: File

Singh Supplementary Material

Appendix

Download Singh Supplementary Material(File)
File 39.4 KB