Hostname: page-component-848d4c4894-mwx4w Total loading time: 0 Render date: 2024-06-23T02:21:48.171Z Has data issue: false hasContentIssue false

Age and petrogenesis of mafic granulites from central Madurai block, south India: implications on regional tectonics

Published online by Cambridge University Press:  22 March 2023

J Amal Dev
Affiliation:
Solid Earth Research Group, National Centre for Earth Science Studies, Thiruvananthapuram, India
JK Tomson*
Affiliation:
Solid Earth Research Group, National Centre for Earth Science Studies, Thiruvananthapuram, India
T Vijaya Kumar
Affiliation:
Council of Scientific and Industrial Research – National Geophysical Research Institute, Hyderabad, India
Nilanjana Sorcar
Affiliation:
Solid Earth Research Group, National Centre for Earth Science Studies, Thiruvananthapuram, India
*
Author for correspondence: JK Tomson, Email tomson.jk@ncess.gov.in

Abstract

The Precambrian Southern Granulite Terrane (SGT) of south India is well-known for the preservation of high- to ultrahigh-temperature (HT-UHT) granulites, prominently exposed in its central part forming a linear belt referred to as the Kambam UHT belt. This belt also hosts widespread occurrences of mafic granulites that are observed in close spatial association with the HT-UHT granulites. This study presents detailed petrology, geochemistry and geochronology of representative mafic granulites from the area to understand their petrogenesis and tectonic setting. The results demonstrate that mafic granulites are low- to medium-K tholeiites, with continental arc affinity, formed by the partial melting of a subduction-modified enriched mantle source. The composition of the parent mantle source is modelled with a spinel/garnet lherzolite contribution ratio between 100/0 and 70/30, suggesting the mixing of spinel and garnet bearing melts during asthenosphere upwelling. Zircon U–Pb geochronology of mafic granulites constrains their emplacement between 612 Ma and 625 Ma, that subsequently underwent metamorphism between 581 Ma and 531 Ma. This overlaps with the timing of HT-UHT metamorphism in the Kambam UHT belt bracketed between 593 and 532 Ma. Zircon Hf isotopic studies reveal parent magma generation from reworked melting sources involving Archean and Proterozoic components. These results propose an alternative heat source for the formation of HT-UHT granulites in the Kambam UHT belt which can be designated as a major terrane boundary within the SGT.

Type
Original Article
Copyright
© The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anders, E and Grevesse, N (1989) Abundances of the elements: meteoritic and solar. Geochimica et Cosmochimica Acta 53, 197214.CrossRefGoogle Scholar
Blichert-Toft, J and Albarède, F (1997) The Lu-Hf isotope geochemistry of chondrites and the evolution of the mantle-crust system. Earth and Planetary Science Letters 148, 243–58.CrossRefGoogle Scholar
Brandt, S, Raith, MM, Schenk, V, Sengupta, P, Srikantappa, C and Gerdes, A (2014) Crustal evolution of the Southern Granulite Terrane, south India: new geochronological and geochemical data for felsic orthogneisses and granites. Precambrian Research 246, 91122.CrossRefGoogle Scholar
Brandt, S, Schenk, V, Raith, MM, Appel, P, Gerdes, A and Srikantappa, C (2011) Late Neoproterozoic PT evolution of HP-UHT granulites from the Palni Hills (South India): new constraints from phase diagram modelling, LA-ICP-MS zircon dating and in-situ EMP monazite dating. Journal of Petrology 52, 1813–56.CrossRefGoogle Scholar
Brown, M (2006) Duality of thermal regimes is the distinctive characteristic of plate tectonics since the Neoarchean. Geology 34, 961–4.CrossRefGoogle Scholar
Brown, M (2007) Metamorphic conditions in orogenic belts: a record of secular change. International Geology Review 49, 193234.CrossRefGoogle Scholar
Carlson, RW and Hart, WK (1988) Flood basalt volcanism in the northwestern United States. In Continental Flood Basalts (ed. JD Macdougall), pp. 3561. Dordrecht: Springer.CrossRefGoogle Scholar
Cenki, B and Kriegsman, LM (2005) Tectonics of the Neoproterozoic southern granulite terrain, South India. Precambrian Research 138, 3756.CrossRefGoogle Scholar
Chadwick, B, Vasudev, VN and Hegde, GV (2000) The Dharwar craton, southern India, interpreted as the result of Late Archaean oblique convergence. Precambrian Research 99, 91111.CrossRefGoogle Scholar
Clark, C, Healy, D, Johnson, T, Collins, AS, Taylor, RJ, Santosh, M and Timms, NE (2015) Hot orogens and supercontinent amalgamation: a Gondwanan example from southern India. Gondwana Research 28, 1310–28.CrossRefGoogle Scholar
Collins, AS, Clark, C and Plavsa, D (2014) Peninsular India in Gondwana: the tectonothermal evolution of the Southern Granulite Terrain and its Gondwanan counterparts. Gondwana Research 25, 190203.CrossRefGoogle Scholar
Cox, KG, Bell, JD and Pankhurst, RJ (1979) The Interpretation of Igneous Rocks. London: George, Allen and Unwin, 450 pp.CrossRefGoogle Scholar
Cui, X, Sun, M, Zhao, G and Zhang, Y (2021) Origin of Permian mafic intrusions in southern Chinese Altai, Central Asian Orogenic Belt: a post-collisional extension system triggered by slab break-off. Lithos 390, 106112.CrossRefGoogle Scholar
Deevsalar, R, Shinjo, R, Ghaderi, M, Murata, M, Hoskin, PWO, Oshiro, S, Wang, KL, Lee, HY and Neill, I (2017) Mesozoic–Cenozoic mafic magmatism in Sanandaj–Sirjan zone, Zagros Orogen (Western Iran): geochemical and isotopic inferences from middle Jurassic and late Eocene gabbros. Lithos 284, 588607.CrossRefGoogle Scholar
DePaolo, DJ and Daley, EE (2000) Neodymium isotopes in basalts of the southwest basin and range and lithospheric thinning during continental extension. Chemical Geology 169, 157–85.CrossRefGoogle Scholar
Dev, JA, Tomson, JK, Sorcar, N and Francis, KA (2022a) Timing of UHT metamorphism and cooling in south Indian granulites: New PTt results from a sapphirine granulite. Precambrian Research, 371, 106582.Google Scholar
Dev, JA, Sorcar, N, Mukherjee, S and Tomson, JK (2022b) Phase equilibrium modelling and zircon-monazite geochronology of HT-UHT granulites from Kambam ultrahigh-temperature belt, south India. International Geology Review, 119.Google Scholar
Dev, JA, Tomson, JK, Sorcar, N and Nandakumar, V (2021) Combined U-Pb/Hf isotopic studies and phase equilibrium modelling of HT-UHT metapelites from Kambam ultrahigh-temperature belt, south India: constraints on tectonothermal history of the terrane. Lithos, 406, 106531.CrossRefGoogle Scholar
Fairhead, JD (1988) Mesozoic plate tectonic reconstructions of the central South Atlantic Ocean: the role of the West and Central African rift system. Tectonophysics 155, 181–91.CrossRefGoogle Scholar
Ferry, JM and Watson, EB (2007) New thermodynamic models and revised calibrations for the Ti-in-zircon and Zr-in-rutile thermometers. Contributions to Mineralogy and Petrology 154, 429–37.CrossRefGoogle Scholar
Fitton, JG, James, D, Kempton, PD, Ormerod, DS and Leeman, WP (1988) The role of lithospheric mantle in the generation of late Cenozoic basic magmas in the western United States. Journal of Petrology25, 331–49.CrossRefGoogle Scholar
Frey, FA (1980) The origin of pyroxenites and garnet pyroxenites from Salt Lake Crater, Oahu, Hawaii: trace element evidence. American Journal of Science, 280, 427–49.Google Scholar
Fu, B, Page, FZ, Cavosie, AJ, Fournelle, J, Kita, NT, Lackey, JS, Wilde, S and Valley, JW (2008) Ti-in-zircon thermometry: applications and limitations. Contributions to Mineralogy and Petrology 156, 197215.CrossRefGoogle Scholar
Ghosh, JG, de Wit, MJ and Zartman, RE (2004) Age and tectonic evolution of Neoproterozoic ductile shear zones in the Southern Granulite Terrain of India, with implications for Gondwana studies. Tectonics 23, TC3006.CrossRefGoogle Scholar
Giustina, MESD, Pimentel, MM, Ferreira Filho, CF and de Hollanda, MHBM (2011) Dating coeval mafic magmatism and ultrahigh temperature metamorphism in the Anápolis-Itauçu Complex, Central Brazil. Lithos 124, 82102.CrossRefGoogle Scholar
Griffin, WL, Belousova, EA, Shee, SR, Pearson, NJ and O’Reilly, SY (2004) Archean crustal evolution in the northern Yilgarn craton: U-Pb and Hf-Isotope evidence from detrital zircons: Precambrian Research, 131, 231–82.CrossRefGoogle Scholar
Griffin, WL, Pearson, NJ, Belousova, E, Jackson, SV, Van Achterbergh, E, O’Reilly, SY and Shee, SR (2000) The Hf isotope composition of cratonic mantle: LAM-MC-ICPMS analysis of zircon megacrysts in kimberlites. Geochimica et Cosmochimica Acta 64, 133–47.CrossRefGoogle Scholar
Grimes, CB, John, BE, Kelemen, PB, Mazdab, FK, Wooden, JL, Cheadle, MJ, Hanghøj, K and Schwartz, JJ (2007) Trace element chemistry of zircons from oceanic crust: a method for distinguishing detrital zircon provenance. Geology 35, 643–6.CrossRefGoogle Scholar
Gündüz, M and Asan, K (2021) PetroGram: an Excel-based petrology program for modeling of magmatic processes. Geoscience Frontiers 12, 8192.CrossRefGoogle Scholar
Guo, J, Peng, P, Chen, Y, Jiao, S and Windley, BF (2012) UHT sapphirine granulite metamorphism at 1.93–1.92 Ga caused by gabbronorite intrusions: implications for tectonic evolution of the northern margin of the North China Craton. Precambrian Research 222, 124–42.CrossRefGoogle Scholar
Hollocher, K, Robinson, P, Walsh, E and Roberts, D (2012) Geochemistry of amphibolite-facies volcanics and gabbros of the Støren Nappe in extensions west and southwest of Trondheim, Western Gneiss Region, Norway: a key to correlations and paleotectonic settings. American Journal of Science 312, 357416.CrossRefGoogle Scholar
Irvine, TN and Baragar, WRA (1971) A guide to the chemical classification of the common volcanic rocks. Canadian Journal of Earth Sciences 8, 523–48.CrossRefGoogle Scholar
Janoušek, V, Farrow, CM and Erban, V (2006) Interpretation of whole-rock geochemical data in igneous geochemistry: introducing Geochemical Data Toolkit (GCDkit). Journal of Petrology 47, 1255–9.CrossRefGoogle Scholar
Jayananda, M, Moyen, J-F, Martin, H, Peucat, J-J, Auvray, B and Mahabaleswar, B (2000) Late Archaean (2550–2520 Ma) juvenile magmatism in the Eastern Dharwar craton, southern India: constraints from geochronology, Nd–Sr isotopes and whole rock geochemistry. Precambrian Research 99, 225–54.CrossRefGoogle Scholar
Kay, RW and Kay, SM (1993) Delamination and delamination magmatism. Tectonophysics 219, 177–89.CrossRefGoogle Scholar
Kelsey, DE and Hand, M (2015) On ultrahigh temperature crustal metamorphism: phase equilibria, trace element thermometry, bulk composition, heat sources, timescales and tectonic settings. Geoscience Frontiers 6, 311–56.CrossRefGoogle Scholar
Kemp, AIS, Shimura, T and Hawkesworth, CJ (2007) Linking granulites, silicic magmatism, and crustal growth in arcs: ion microprobe (zircon) U-Pb ages from the Hidaka metamorphic belt, Japan. Geology 35, 807–10.CrossRefGoogle Scholar
Khalaf, EA, Khalaf, M and Oraby, F (2011) Polybaric evolution of the volcanic rocks at Gabal Nuqara, North Eastern Desert, Egypt. In Topics in Igneous Petrology (eds J Ray, G Sen and B Ghosh), pp. 277317. Dordrecht: Springer.CrossRefGoogle Scholar
Klaver, M, De Roever, EW, Thijssen, AC, Bleeker, W, Söderlund, U, Chamberlain, K, Ernst, R, Berndt, J and Zeh, A (2016) Mafic magmatism in the Bakhuis Granulite Belt (western Suriname): relationship with charnockite magmatism and UHT metamorphism. GFF 138, 203–18.CrossRefGoogle Scholar
Kohn, MJ, Engi, M and Lanari, P (2017) Petrochronology. Methods and Applications, Mineralogical Society of America Reviews in Mineralogy and Geochemistry 83, 575.Google Scholar
Kröner, A, Santosh, M, Hegner, E, Shaji, E, Geng, H, Wong, J and Xie, H (2015) Palaeoproterozoic ancestry of Pan-African high-grade granitoids in southernmost India: implications for Gondwana reconstructions. Gondwana Research 27, 137.CrossRefGoogle Scholar
Kumar, TV, Rao, YB, Plavsa, D, Collins, AS, Tomson, JK, Gopal, BV and Babu, EVSSK (2017) Zircon U-Pb ages and Hf isotopic systematics of charnockite gneisses from the Ediacaran–Cambrian high-grade metamorphic terranes, southern India: constraints on crust formation, recycling, and Gondwana correlations. Geological Society of America Bulletin 129, 625–48.Google Scholar
Ludwig, KR (2012) ISOPLOT ver. 4.15. Berkeley, California: Berkeley Geochronology Center.Google Scholar
McDonough, WS (1990) Constraints on the composition of the continental lithospheric mantle. Earth and Planetary Science Letters 101, 118.CrossRefGoogle Scholar
McKenzie, DAN and Bickle, MJ (1988) The volume and composition of melt generated by extension of the lithosphere. Journal of Petrology 29, 625–79.CrossRefGoogle Scholar
Menzies, MA, Kyle, PR, Jones, M and Ingram, G (1991) Enriched and depleted source components for tholeiitic and alkaline lavas from Zuni-Bandera, New Mexico: inferences about intraplate processes and stratified lithosphere. Journal of Geophysical Research: Solid Earth 96, 13645–71.CrossRefGoogle Scholar
Mullen, ED (1983) MnO/TiO2/P2O5: a minor element discriminant for basaltic rocks of oceanic environments and its implications for petrogenesis. Earth and Planetary Science Letters 62, 5362.CrossRefGoogle Scholar
Nandakumar, V and Harley, SL (2019) Geochemical signatures of mid-crustal melting processes and heat production in a hot orogen: the Kerala Khondalite Belt, Southern India. Lithos 324, 479500.CrossRefGoogle Scholar
Nowell, GM, Kempton, PD, Noble, SR, Fitton, JG, Saunders, AD, Mahoney, JJ and Taylor, RN (1998) High precision Hf isotope measurements of MORB and OIB by thermal ionisation mass spectrometry: insights into the depleted mantle. Chemical Geology 149, 211–33.CrossRefGoogle Scholar
O’Reilly, SY and Griffin, WL (2013) Mantle metasomatism. In Metasomatism and the Chemical Transformation of Rock (eds DE Harlov and H Austrheim), pp. 471533. Berlin and Heidelberg: Springer.CrossRefGoogle Scholar
Paton, C, Hellstrom, J, Paul, B, Woodhead, J and Hergt, J (2011) Iolite: freeware for the visualisation and processing of mass spectrometric data. Journal of Analytical Atomic Spectrometry 26, 2508–18.CrossRefGoogle Scholar
Pearce, JA (2008) Geochemical fingerprinting of oceanic basalts with applications to ophiolite classification and the search for Archean oceanic crust. Lithos 100, 1448.CrossRefGoogle Scholar
Pearce, NJ, Perkins, WT, Westgate, JA, Gorton, MP, Jackson, SE, Neal, CR and Chenery, SP (1997) A compilation of new and published major and trace element data for NIST SRM 610 and NIST SRM 612 glass reference materials. Geostandards Newsletter 21, 115–44.CrossRefGoogle Scholar
Petrus, JA and Kamber, BS (2011) VisualAge: a novel approach to U–Pb LA–ICP–MS geochronology. Mineralogical Magazine 75, 1633.Google Scholar
Plavsa, D, Collins, AS, Foden, JF, Kropinski, L, Santosh, M, Chetty, TRK and Clark, C (2012) Delineating crustal domains in Peninsular India: age and chemistry of orthopyroxene-bearing felsic gneisses in the Madurai Block. Precambrian Research 198, 7793.CrossRefGoogle Scholar
Prakash, D, Arima, M and Mohan, A (2007) Ultrahigh-temperature mafic granulites from Panrimalai, south India: constraints from phase equilibria and thermobarometry. Journal of Asian Earth Sciences 29, 4161.CrossRefGoogle Scholar
Ratheesh-Kumar, RT, Dharmapriya, PL, Windley, BF, Xiao, WJ and Jeevan, U (2020) The tectonic “umbilical cord” linking India and Sri Lanka and the tale of their failed rift. Journal of Geophysical Research: Solid Earth 125, e2019JB018225.Google Scholar
Ray, S, Tiwari, AK and Sarkar, T (2021) Ultrahigh-temperature mafic granulites from the Madurai Block, southern India: constraints from conventional thermobarometry, pseudosection analysis, and rare earth element-based thermometry. Geological Journal 56, 3720–44.CrossRefGoogle Scholar
Rollinson, HR (2014) Using Geochemical Data: Evaluation, Presentation, Interpretation. London: Routledge.CrossRefGoogle Scholar
Rubatto, D, Chakraborty, S and Dasgupta, S (2013) Timescales of crustal melting in the Higher Himalayan Crystallines (Sikkim, Eastern Himalaya) inferred from trace element-constrained monazite and zircon chronology. Contributions to Mineralogy and Petrology 165, 349–72.CrossRefGoogle Scholar
Rubatto, D and Hermann, J (2003) Zircon formation during fluid circulation in eclogites (Monviso, Western Alps): implications for Zr and Hf budget in subduction zones. Geochimica et Cosmochimica Acta 67, 2173–87.CrossRefGoogle Scholar
Sajna, S, Tomson, JK, Dev, JA, Sorcar, N and Kumar, TV (2022) Neoproterozoic Mafic Magmatism in Nagercoil Block, Southern India and Its Implications on the Gondwana Collisional Orogeny. Minerals, 12, 1509.CrossRefGoogle Scholar
Santos, MM, Lana, C, Scholz, R, Buick, I, Schmitz, MD, Kamo, SL, Gerdes, A, Corfu, F, Tapster, S, Lancaster, P and Wiedenbeck, M (2017) A new appraisal of Sri Lankan BB zircon as a reference material for LA-ICP-MS U-Pb geochronology and Lu-Hf isotope tracing. Geostandards and Geoanalytical Research 41, 335–58.CrossRefGoogle Scholar
Santosh, M, Tsunogae, T, Malaviarachchi, SP, Zhang, Z, Ding, H, Tang, L and Dharmapriya, PL (2014) Neoproterozoic crustal evolution in Sri Lanka: insights from petrologic, geochemical and zircon U–Pb and Lu–Hf isotopic data and implications for Gondwana assembly. Precambrian Research 255, 129.CrossRefGoogle Scholar
Scherer, E, Münker, C and Mezger, K (2001) Calibration of the lutetium-hafnium clock. Science 293, 683–7.CrossRefGoogle ScholarPubMed
Sláma, J, Košler, J, Condon, DJ, Crowley, JL, Gerdes, A, Hanchar, JM, Horstwood, MS, Morris, GA, Nasdala, L, Norberg, N, Schaltegger, U and Whitehouse, MJ (2008). Plešovice zircon: a new natural reference material for U–Pb and Hf isotopic microanalysis. Chemical Geology 249, 135.CrossRefGoogle Scholar
Song, S, Wang, M, Wang, C and Niu, Y (2015) Magmatism during continental collision, subduction, exhumation and mountain collapse in collisional orogenic belts and continental net growth: a perspective. Science China Earth Sciences 58, 1284–304.CrossRefGoogle Scholar
Srinivasan, V and Rajeshdurai, P (2010) The Suruli shear zone and regional scale folding pattern in Madurai block of Southern Granulite Terrain, south India. Journal of Earth System Science 119, 147–60.CrossRefGoogle Scholar
Sun, SS and McDonough, WF (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In Magmatism in the Ocean Basins (eds AD Saunders and MJ Norry), pp. 313–45. Geological Society of London, Special Publication no. 42.Google Scholar
Takahashi, E and Kushiro, I (1983) Melting of a dry peridotite at high pressures and basalt magma genesis. American Mineralogist 68, 859–79.Google Scholar
Takamura, Y, Tsunogae, T, Santosh, M, Malaviarachchi, SP and Tsutsumi, Y (2015) Petrology and zircon U–Pb geochronology of metagabbro from the Highland Complex, Sri Lanka: implications for the correlation of Gondwana suture zones. Journal of Asian Earth Sciences 113, 826–41.CrossRefGoogle Scholar
Takamura, Y, Tsunogae, T and Tsutsumi, Y (2020) U–Pb geochronology and REE geochemistry of zircons in mafic granulites from the Lützow-Holm complex, East Antarctica: implications for the timing and P–T path of post-peak exhumation and Antarctica–Sri Lanka correlation. Precambrian Research 348, 105850.CrossRefGoogle Scholar
Tomson, JK, Rao, YB, Kumar, TV and Choudhary, AK (2013) Geochemistry and neodymium model ages of Precambrian charnockites, Southern Granulite Terrain, India: constraints on terrain assembly. Precambrian Research 227, 295315.CrossRefGoogle Scholar
Wang, B, Wei, CJ, Tian, W and Fu, B (2020) UHT metamorphism peaking above 1100° C with slow cooling: insights from pelitic granulites in the Jining complex, North China Craton. Journal of Petrology 61, egaa070.CrossRefGoogle Scholar
Wang, M, Wang, CY and Sun, Y (2013) Mantle source, magma differentiation and sulfide saturation of the ∼637 Ma Zhouan mafic–ultramafic intrusion in the northern margin of the Yangtze Block, Central China. Precambrian Research, 228, 206–22.CrossRefGoogle Scholar
Wedepohl, KH (1995) The composition of the continental crust. Geochimica et Cosmochimica Acta 59, 1217–32.CrossRefGoogle Scholar
Wilson, M (1989) Igneous Petrogenesis. London: Unwin Hyman, 466 pp.CrossRefGoogle Scholar
Yang, QY, Ganguly, S, Shaji, E, Dong, Y and Nanda-Kumar, V (2019) Extensional collapse of the Gondwana orogen: evidence from Cambrian mafic magmatism in the Trivandrum Block, southern India. Geoscience Frontiers 10, 263–84.CrossRefGoogle Scholar
Zeh, A, Gerdes, A, Klemd, R and Barton, JM Jr (2008) U–Pb and Lu–Hf isotope record of detrital zircon grains from the Limpopo Belt: evidence for crustal recycling at the Hadean to early-Archean transition. Geochimica et Cosmochimica Acta 72, 5304–29.CrossRefGoogle Scholar
Zhao, JH and Zhou, MF (2007) Geochemistry of Neoproterozoic mafic intrusions in the Panzhihua district (Sichuan Province, SW China): implications for subduction-related metasomatism in the upper mantle. Precambrian Research 152, 2747.CrossRefGoogle Scholar
Supplementary material: File

Dev et al. supplementary material

Dev et al. supplementary material 1

Download Dev et al. supplementary material(File)
File 17.7 KB
Supplementary material: File

Dev et al. supplementary material

Dev et al. supplementary material 2

Download Dev et al. supplementary material(File)
File 82.4 KB
Supplementary material: File

Dev et al. supplementary material

Dev et al. supplementary material 3

Download Dev et al. supplementary material(File)
File 14.9 KB
Supplementary material: File

Dev et al. supplementary material

Dev et al. supplementary material 4

Download Dev et al. supplementary material(File)
File 10 KB