Skip to main content Accessibility help
×
Home
Hostname: page-component-888d5979f-lv79x Total loading time: 0.483 Render date: 2021-10-25T15:05:22.961Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Sedimentary facies analyses from nano- to millimetre scale exploring past microbial activity in a high-altitude lake (Lake Son Kul, Central Asia)

Published online by Cambridge University Press:  02 March 2015

MURIEL PACTON*
Affiliation:
Laboratoire de Géologie de Lyon: Terre, Planètes, Environnement (UMR 5276 CNRS), Université Claude Bernard–Lyon 1, Villeurbanne, France
PHILIPPE SORREL*
Affiliation:
Laboratoire de Géologie de Lyon: Terre, Planètes, Environnement (UMR 5276 CNRS), Université Claude Bernard–Lyon 1, Villeurbanne, France
BENOÎT BEVILLARD
Affiliation:
Laboratoire de Géologie de Lyon: Terre, Planètes, Environnement (UMR 5276 CNRS), Université Claude Bernard–Lyon 1, Villeurbanne, France
AXELLE ZACAÏ
Affiliation:
Laboratoire de Géologie de Lyon: Terre, Planètes, Environnement (UMR 5276 CNRS), Université Claude Bernard–Lyon 1, Villeurbanne, France
ARNAULD VINÇON-LAUGIER
Affiliation:
Laboratoire de Géologie de Lyon: Terre, Planètes, Environnement (UMR 5276 CNRS), Université Claude Bernard–Lyon 1, Villeurbanne, France
HEDI OBERHÄNSLI
Affiliation:
Helmholtz-Centre Potsdam, German Geoscience Research Centre (GFZ), Section 5.2, Telegrafenberg, D-14473 Potsdam, Germany Museum für Naturkunde, Leibnitz-Institute Berlin (Mineralogy), Invalidenstrasse 43, 10115 Berlin, Germany

Abstract

The fabric of sedimentary rocks in lacustrine archives usually contains long and continuous proxy records of biological, chemical and physical parameters that can be used to study past environmental and climatic variability. Here we propose an innovative approach to sedimentary facies analysis based on a coupled geomicrobiological and sedimentological study using high-resolution microscopic techniques in combination with mineralogical analyses. We test the applicability of this approach on Lake Son Kul, a high alpine lake in central Tien Shan (Kyrgyzstan) by looking at the mineral fabric and microbial communities observed down to the nanoscale. The characterization of microbe–mineral interactions allows the origin of four carbonate minerals (e.g. aragonite, dolomite, Mg-calcite, calcite) to be determined as primary or diagenetic phases in Lake Son Kul. Aragonite was mainly of primary origin and is driven by biological activity in the epilimnion, whereas diagenetic minerals such as Mg-calcite, calcite, dolomite and pyrite were triggered by bacterial sulphate reduction and possibly by methanotrophic archaea. A new morphotype of aragonite (i.e. spherulite-like precursor) occurs in Unit IV (c. 7100–5000 cal. BP) associated with microbial mat structures. The latter enhanced the preservation of viral relics, which have not yet been reported in Holocene lacustrine sediments. This study advocates that microbe–mineral interactions screened down to the nanoscale (e.g. virus-like particles) can be used successfully for a comprehensive description of the fabric of laminated lake sediments. In this sense, they complement traditional facies sedimentology tools and offer valuable new insights into: (1) the study of microbial and viral biosignatures in Quaternary sediments; and (2) palaeoenvironmental reconstructions.

Type
Original Articles
Copyright
Copyright © Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

These authors contributed equally to this work

References

Amann, R. I., Ludwig, W. & Schleifer, K-H. 1995. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiological Reviews 59, 143–69.Google ScholarPubMed
Amann, R. I., Krumholz, L. & Stahl, D. A. 1990. Fluorescent-oligonucleotide probing of whole cells for determinative, phylogenetic, and environmental studies in microbiology. Journal of Bacteriology 172, 762–70.CrossRefGoogle ScholarPubMed
Andreassen, J.-P., Beck, R. & Nergaard, M. 2012. Biomimetic type morphologies of calcium carbonate grown in absence of additives. Faraday Discussion 159, 247–61.CrossRefGoogle Scholar
Arp, G., Helms, G., Karlinska, K., Schumann, G., Reimer, A., Reitner, J. & Trichet, J. 2012. Photosynthesis versus exopolymer degradation in the formation of microbialites on the atoll of Kiritimati, Republic of Kiribati, Central Pacific. Geomicrobiology Journal 29, 2965.CrossRefGoogle Scholar
Banfield, J. F., Moreau, J. W., Chan, C. S., Welch, S. A. & Little, B. 2001. Mineralogical biosignatures and the search for life on Mars. Astrobiology 1, 447–63.CrossRefGoogle ScholarPubMed
Beloglasova, V. N. & Smirnova, N. B. 1987. Altas Kirgizskoj SSR. GUGK SSSR, Bishkek (in Russian).Google Scholar
Berner, R. A. 1984. Sedimentary pyrite formation: An update. Geochimica et Cosmochimica Acta 48, 605–15.CrossRefGoogle Scholar
Bettarel, Y., Bouvy, M., Dumont, C. & Sime-Ngando, T. 2006. Virus-bacterium interactions in water and sediment of West African inland aquatic systems. Applied and Environmental Microbiology 72, 5274–82.CrossRefGoogle ScholarPubMed
Betts-Piper, A. M., Zeeb, B. A. & Smol, J. P. 2004. Distribution and autoecology of chrysophyte cysts from high Arctic Svalbard lakes: preliminary evidence of recent environmental change. Journal of Paleolimnology 31, 467–81.CrossRefGoogle Scholar
Bird, D. F., Juniper, S. K., Ricciardi-Rigault, M., Martineu, P., Prairie, Y. T. & Calvert, S. E. 2001. Subsurface viruses and bacteria in Holocene/Late Pleistocene sediments of Saanich Inlet, BC: ODP holes 1033B and 1043B, Leg 169S. Marine Geology 174, 227–39.CrossRefGoogle Scholar
Bird, M. I., Chivas, A. R., Radnell, C. J. & Burton, H. R. 1991. Sedimentological and stable-isotope evolution of lakes in the Vestfold Hills, Antarctica. Palaeogeography, Palaeoclimatology, Palaeoecology 84, 109–30.CrossRefGoogle Scholar
Blowes, D. W. & Jambor, J. L. 1990. The pore-water geochemistry and the mineralogy of the vadose zone of sulfide tailings, Waite Amulet, Quebec, Canada. Applied Geochemistry 5, 327–46.CrossRefGoogle Scholar
Boetius, A., Ravenschlag, K., Schubert, C., Rickert, D., Widdel, F., Gieseke, A., Amann, R., Jørgensen, B. B., Witte, U. & Pfannkuche, O. 2000. A marine microbial consortium apparently mediating anaerobic oxidation of methane. Nature 407, 623–6.CrossRefGoogle ScholarPubMed
Bontognali, T. R. R., McKenzie, J. A., Warthmann, R. J. & Vasconcelos, C. 2014. Microbially influenced formation of Mg-calref and Ca-dolomite in the presence of exopolymeric substances produced by sulphate-reducing bacteria. Terra Nova 26, 72–7.CrossRefGoogle Scholar
Boss, S. K. & Neumann, A. C. 1993. Physical versus chemical processes of whiting formation in the Bahamas. Carbonates Evaporites 8, 135–48.CrossRefGoogle Scholar
Brauer, A., Allen, J. R. M., Mingram, J., Dulski, P., Wulf, S. & Huntley, B. 2007. Evidence for last interglacial chronology and environmental change from southern Europe. PNAS 104 (2), 450–55.CrossRefGoogle ScholarPubMed
Buckley, D. H., Baumgartner, L. K. & Visscher, P. T. 2008. Vertical distribution of methane metabolism in microbial mats of the Great Sippewissett Salt Marsh. Environmental Microbiology 10, 967–77.CrossRefGoogle ScholarPubMed
Cabala, J. & Piatek, M. 2004. Chrysophycean stomatocysts from the Staw Toporowy Nizni lake (Tatra National Park, Poland). Annales de Limnologie – International Journal of Limnology 40, 149–65.CrossRefGoogle Scholar
Chanton, J. L., Chaser, P., Glasser, D. & Siegel, 2005. Carbon and hydrogen isotopic effects in microbial methane from terrestrial environments. Chapter 6. In Stable Isotopes and Biosphere - Atmosphere Interactions: Processes and Biological Controls (eds Flanagan, L. B., Ehleringer, J. R. & Pataki, D. E.), pp. 85112. Amsterdam: Elsevier.CrossRefGoogle Scholar
Charpentier, D., Mosser-Ruck, R., Cathelineau, M. & Guillaume, D. 2004. Oxidation of mudstone in a tunnel (Tournemire, France): consequences on mineralogy and crystal chemistry of clay minerals. Clay Mineralogy 39, 135–49.CrossRefGoogle Scholar
Charvet, S., Vincent, W. F. & Lovejoy, C. 2012. Chrysophytes and other protists in High Arctic lakes: molecular gene surveys, pigment signatures and microscopy. Polar Biology 35, 733–48.CrossRefGoogle Scholar
Dean, W., Rosenbaun, J., Skipp, G., Colman, S., Forester, R., Liu, A., Simmons, K. & Bischoff, J. 2006. Unusual Holocene and late Pleistocene carbonate sedimentation in Bear Lake, Utah and Idaho, USA. Sedimentary Geology 185, 93112.CrossRefGoogle Scholar
DeGroot, K. 1965. Inorganic precipitation of calcium carbonate production from seawater. Nature 207, 404–5.CrossRefGoogle Scholar
Deng, S., Dong, H., Lv, G., Jiang, H., Yu, B. & Bishop, M. E. 2010. Microbial dolomite precipitation using sulfate reducing and halophilic bacteria: Results from Qinghai Lake, Tibetan Plateau, NW China. Chemical Geology 278, 151–9.CrossRefGoogle Scholar
Duff, K. E. & Smol, J. P. 1991. Morphological descriptions and stratigraphic distributions of the chrysophycean stomatocysts from a recently acidified lake (Adirondack Park, N.Y.). Journal of Paleolimnology 5, 73113.CrossRefGoogle Scholar
Duff, K. E., Zeeb, B. A. & Smol, J. P. 1995. Atlas of Chrysophycean Cysts. Dordrecht: Kluwer Academic Publishers, 189 pp.CrossRefGoogle Scholar
Duhamel, S. & Jacquet, S. 2006. Flow cytometric analysis of bacteria- and virus-like particles in lake sediments. Journal of Microbiological Methods 64, 316–22.CrossRefGoogle ScholarPubMed
Dupraz, C., Reid, R. P., Braissant, O., Decho, A. W., Norman, R. S. & Visscher, P. T. 2009. Processes of carbonate precipitation in modern microbial mats. Earth Science Reviews 6, 141–62.CrossRefGoogle Scholar
Edwards, K. J., Bond, P. L., Druschel, G. K., McGuire, M. M., Hamers, R. J. & Banfield, J. F. 2000. Geochemical and biological aspects of sulfide mineral dissolution: lessons from Iron Mountain, California. Chemical Geology 169, 383–97.CrossRefGoogle Scholar
Facher, E. & Schmidt, R. 1996. A siliceous chrysophycean cyst-based pH transfer function for Central European Lakes. Journal of Paleolimnology 16, 275321.CrossRefGoogle Scholar
Fischer, U. R., Wieltschnig, C., Kirschner, A. K. T. & Velimirov, B. 2003. Does virus-induced lysis contribute significantly to bacterial mortality in the oxygenated sediment layer of shallow oxbow lakes? Applied and Environmental Microbiology 69, 5281–9.CrossRefGoogle ScholarPubMed
Flügel, E. 2004. Microfacies of Carbonate Rocks. Analysis, Interpretation and Application. Berlin, Heidelberg, New York: Springer, 976 pp.Google Scholar
Francus, P., Suchodoletz, H., Dietze, M., Donner, R. V., Bouchard, F., Roy, A-J., Fagot, M., Verschuren, D. & Kröpelin, S. 2013. Varved sediments of Lake Yoa (Ounianga Kebir, Chad) reveal progressive drying of the Sahara during the last 6100 years. Sedimentology 60, 911–34.CrossRefGoogle Scholar
Fuhrman, J. A. 1999. Marine viruses and their biogeochemical and ecological effects. Nature 399, 541–8.CrossRefGoogle ScholarPubMed
Gaudin, A., Buatier, M. D., Beaufort, D., Petit, S., Grauby, O. & Decareau, A. 2005. Characterization and origin of Fe3+-Montmorillonite in deep water calcareous sediments (Pacific ocean, Costa Rica margin). Clays and Clay Minerals 53, 452–65.CrossRefGoogle Scholar
Giralt, S., Julia, R. & Klerkx, J. 2001. Microbial biscuits of vaterite in Lake Issyk-Kul (Republic of Kyrgyzstan). Journal of Sedimentary Research 71, 430–5.CrossRefGoogle Scholar
Gorby, Y. A., Yanina, S., McLean, J. S., Rosso, K. M., Moyles, D., Dohnalkova, A., Beveridge, T. J., Chang, I. S., Kim, B. H., Kim, K. S., Culley, D. E., Reed, S. B., Romine, M. F., Saffarini, D. A., Hill, E. A., Shi, L., Elias, D. A., Kennedy, D. W., Pinchuk, G., Watanabe, K., Ishii, S., Logan, B., Nealson, K. H. & Fredrickson, J. K. 2006. Electrically conductive bacterial nanowires produced by Shewanella oneidensis strain MR-1 and other microorganisms. Proceedings of the National Academy of Sciences of the USA 103, 11358–63.CrossRefGoogle ScholarPubMed
Habicht, K. S. & Canfield, D. E. 1997. Sulfur isotope fractionation during bacterial sulfate reduction in organic-rich sediments. Geochimica et Cosmochimica Acta 61, 5351–61.CrossRefGoogle ScholarPubMed
Hansen, L. B., Finster, K., Fossing, H. & Iversen, N. 1998. Anaerobic methane oxidation in sulfate depleted sediments: effects of sulfate and molybdate additions. Aquatic Microbial Ecology 14, 195204.CrossRefGoogle Scholar
Hendy, C. H. 2000. Late Quaternary lakes in the McMurdo Sound region of Antarctica. Geografiska Annaler 82A, 411–32.CrossRefGoogle Scholar
Hendy, C. H., Healy, T. R., Rayner, E. M., Shaw, J. & Wilson, A. T. 1979. Late Pleistocene glacial chronology of the Taylor Valley, Antarctica, and the global climate. Quaternary Research 11, 172–84.CrossRefGoogle Scholar
Hinrichs, K. U., Hayes, J. M., Sylva, S. P., Brewer, P. G. & DeLong, E. F. 1999. Methane consuming archaebacteria in marine sediments. Nature 398 (6730), 802–5.CrossRefGoogle ScholarPubMed
Hodell, D. A., Schelske, C. L., Fahnenstiel, G. L. & Robbins, L. L. 1998. Biologically induced calref and its isotopic composition in Lake Ontario. Limnology and Oceanography 43, 187–99.CrossRefGoogle Scholar
Holmgren, S. K. 1984. Experimental lake fertilization in the Kuokkel area, Northern Sweden: Phytoplankton biomass and algal composition in natural and fertilized subarctic lakes. Internationale Revue der gesamten Hydrobiologie 69, 781817.CrossRefGoogle Scholar
Huang, X., Oberhänsli, H., von Suchodoletz, H., Prasad, S., Sorrel, P., Plessen, B., Mathis, M. & Usubaliev, R. 2014. Hydrological changes in western Central Asia (Kyrgyzstan) during the Holocene: Results of a paleolimnological study from Son Kul. Quaternary Science Reviews 103, 134–52.CrossRefGoogle Scholar
Jahren, A. H., LePage, B. A. & Werts, S. P. 2004. Methanogenesis in Eocene Arctic soils inferred from δ13C of tree fossil carbonates. Palaeogeography, Palaeoclimatology Palaeoecology 214, 347–58.CrossRefGoogle Scholar
Kelts, K. & Hsü, K. J. 1978. Freshwater carbonate sedimentation. In: Lakes, Chemistry, Geology, Physics (ed. Lerman, A.), pp. 295323. New York: Springer-Verlag.Google Scholar
Kenward, P. A., Goldstein, R. H., Gonzalez, L. A. & Roberts, J. A. 2009. Precipitation of low-temperature dolomite from an anaerobic microbial consortium: the role of methanogenic Archaea. Geobiology 7 (5), 556–65.CrossRefGoogle ScholarPubMed
Knittel, K., Lösekann, T., Boetius, A., Kort, R. & Amann, R. 2005. Diversity and distribution of methanotrophic archaea at cold seeps. Applied and Environmental Microbiology 71, 467–79.CrossRefGoogle ScholarPubMed
Koschel, R. 1997. Structure and function of pelagic calref precipitation in lake ecosystems. Verhandlungen des Internationalen Vereins für Limnologie 26, 343–9.Google Scholar
Koschel, R., Benndorf, J., Proft, G. & Recknagel, F. 1983. Calref precipitation as a natural control mechanism of eutrophication. Archiv für Hydrobiologie 98 (3), 380408.Google Scholar
Kyle, J. E., Pedersen, K. & Ferris, F. G. 2008. Virus mineralization at low pH in the Rio Tinto, Spain. Geomicrobiology Journal 25, 338–45.CrossRefGoogle Scholar
Land, L. S. 1998. Failure to precipitate dolomite at 25 °C from dilute solutions despite 1000-fold oversaturation after 32 years. Aquatic Geochemistry 4, 361–8.CrossRefGoogle Scholar
Lauterbach, S., Witt, R., Plessen, B., Dulski, P., Prasad, S., Mingram, J., Gleixner, G., Hettler-Riedel, S., Stebich, M., Schnetger, B., Schwalb, A. & Schwarz, A. 2014. Climatic imprint of the mid-latitude Westerlies in the Central Tien Shan of Kyrgyzstan and teleconnections to North Atlantic climate variability during the last 6000 years. The Holocene 24 (8), 970–84.CrossRefGoogle Scholar
Lawrence, M. J. F. & Hendy, C. H. 1985. Water column and sediment characteristics of Lake Fryxell, Taylor Valley, Antarctica. New Zealand Journal of Geology and Geophysics 28, 543–52.CrossRefGoogle Scholar
Lemke, M., Wickstrom, C. & Leff, L. 1997. Preliminary study on the distribution of viruses and bacteria in lotic environments. Archiv für Hydrobiologie 141, 6774.CrossRefGoogle Scholar
Lippmann, F. 1973. Sedimentary Carbonate Minerals. Berlin: Springer-Verlag.CrossRefGoogle Scholar
MacLean, L. C., Tyliszczak, T., Gilbert, P. U., Zhou, D., Pray, T. J., Onstott, T. C. & Southam, G. 2008. A high-resolution chemical and structural study of framboidal pyrite formed within a low-temperature bacterial biofilm. Geobiology 6, 471–80.CrossRefGoogle ScholarPubMed
Maranger, R. & Bird, D. F. 1996. High concentrations of viruses in the sediments of Lac Gilbert, Québec. Microbial Ecology 31, 141–51.CrossRefGoogle ScholarPubMed
Mathis, M., Sorrel, P., Klotz, S., Huang, X. & Oberhänsli, H. 2014. Regional vegetation patterns at Lake Son Kul reveal Holocene climatic variability in central Tien Shan (Kyrgyzstan, Central Asia). Quaternary Science Reviews 89, 169–85.CrossRefGoogle Scholar
McKenzie, J. A. & Vasconcelos, C. 2009. Dolomite Mountains and the origin of the dolomite rock of which they mainly consist: historical developments and new perspectives. Sedimentology 56, 205–19.CrossRefGoogle Scholar
Meister, P. 2013. Two opposing effects of sulfate reduction on carbonate precipitation in normal marine, hypersaline, and alkaline environments. Geology 41, 499502.CrossRefGoogle Scholar
Meulepas, R. J. W., Jagersma, C. G., Khadem, A. F., Stams, A. J. M. & Lens, P. N. L. 2010. Effect of methanogenic substrates on anaerobic oxidation of methane and sulfate reduction by an anaerobic methanotrophic enrichment. Applied Microbiology and Biotechnology 87, 1499–506.CrossRefGoogle ScholarPubMed
Middelboe, M., Glud, R. N. & Filippini, M. 2011. Viral abundance and activity in the deep sub-seafloor biosphere. Aquatic Microbial Ecology 63, 18.CrossRefGoogle Scholar
Middelboe, M. & Jørgensen, N. O. G. 2006. Viral lysis of bacteria: an important source of dissolved amino acids and cell wall components. Journal of the Marine Biological Association of the UK 86, 605–12.CrossRefGoogle Scholar
Milliman, J. D., Freile, D., Steinen, R. P. & Wilber, R. J. 1993. Great Bahama Bank aragonitic muds: mostly inorganically precipitated, mostly exported. Journal of Sedimentary Petrology 63, 589–95.Google Scholar
Moreira, N. F., Walter, L. M., Vasconcelos, C., McKenzie, J. A. & McCall, P. J. 2004. Role of sulfide oxidation in dolomitization: sediment and pore-water geochemistry of a modern hypersaline lagoon system. Geology 32 (8), 701–4.CrossRefGoogle Scholar
Morse, J. W., Gledhill, D. K. & Millero, F. J. 2003. CaCO3 precipitation kinetics in waters from the great Bahama Bank: implications for the relationshipbetweenbankhydrochemistry and whitings. Geochimica et Cosmochimica Acta 67, 2819–26.CrossRefGoogle Scholar
Müller, G., Irion, G. & Förstner, U. 1972. Formation and diagenesis of inorganic Ca-Mg carbonates in the lacustrine environment. Naturwissenschaften 59, 158–64.CrossRefGoogle Scholar
Nauhaus, K., Treude, T., Boetius, A. & Krüger, M. 2005. Environmental regulation of the anaerobic oxidation of methane: a comparison of ANME-I and ANME-II communities. Environmental Microbiology 7, 98106.CrossRefGoogle ScholarPubMed
Neugebauer, I., Brauer, A., Dräger, N., Dulski, P., Wulf, S., Plessen, B., Mingram, J., Herzschuh, U. & Brande, A. 2012. A Younger Dryas varve chronology from the Rehwiese palaeolake record in NE Germany. Quaternary Science Reviews 36, 91102.CrossRefGoogle Scholar
Niemann, H., Lösekann, T., de Beer, D., Elvert, M., Nadalig, T., Knittel, K., Amann, R., Sauter, E. J., Schlüter, M., Klages, M., Foucher, J. P. & Boetius, A. 2006. Novel microbial communities of the Haakon Mosby mud volcano and their role as methane sink. Nature 443, 854–8.CrossRefGoogle ScholarPubMed
Ohfuji, H. & Rickard, D. 2005. Experimental syntheses of framboids – a review. Earth-Science Reviews 71, 147–70.CrossRefGoogle Scholar
Orange, F., Chabin, A., Gorlas, A., Lucas-Staat, S., Geslin, C., Le Romancer, M., Prangishvili, D., Forterre, P. & Westall, F. 2011. Experimental fossilisation of viruses from extremophilic Archaea. Biogeosciences 8, 1465–75.CrossRefGoogle Scholar
Orphan, V. J., House, C. H., Hinrichs, K. U., McKeegan, K. D. & DeLong, E. F. 2001. Methane consuming archaea revealed by directly coupled isotopic and phylogenetic analysis. Science 293 (5529), 484–7.CrossRefGoogle ScholarPubMed
Pacton, M., Fiet, N. & Gorin, G. 2006. Revisiting amorphous organic matter in Kimmeridgian laminites: what is the role of the vulcanization process in the amorphization of organic matter? Terra Nova 18, 380–7.CrossRefGoogle Scholar
Pacton, M., Fiet, N. & Gorin, G. 2007. Bacterial activity and preservation of sedimentary organic matter: the role of exopolymeric substances. Geomicrobiology Journal 24, 571–81.CrossRefGoogle Scholar
Pacton, M., Fiet, N. & Gorin, G. 2008. Unravelling the origin of ultralaminae in sedimentary organic matter: the contribution of bacteria and photosynthetic organisms. Journal of Sedimentary Research 78, 654–67.CrossRefGoogle Scholar
Pacton, M., Gorin, G. & Vasconcelos, C. 2011. Amorphous organic matter – experimental data on formation and the role of microbes. Review of Palaeobotany and Palynology 166, 253–67.CrossRefGoogle Scholar
Pacton, M., Wacey, D., Corinaldesi, C., Tangherlini, M., Kilburn, M. R., Gorin, G., Danovaro, R. & Vasconcelos, C. 2014. Viruses as new agents of organomineralization in the geological record. Nature Communications 5, 4298.CrossRefGoogle ScholarPubMed
Paulo, C. & Dittrich, M. 2013. 2D Raman spectroscopy study of dolomite and cyanobacterial extracellular polymeric substances from Khor Al-Adaid sabkha (Qatar). Journal of Raman Spectroscopy 44, 1563–9.CrossRefGoogle Scholar
Peng, X., Xu, H., Jones, B., Chen, S. & Zhou, H. 2013. Silicified virus-like nanoparticles in an extreme thermal environment: implications for the preservation of viruses in the geological record. Geobiology 11, 511–26.Google Scholar
Pienitz, R., Walker, I. R., Zeeb, B. A., Smol, J. P. & Leavitt, P. R. 1992. Biomonitoring past salinity changes in an athalassic sub-Arctic lake. International Journal of Salt Lake Research 1, 91123.CrossRefGoogle Scholar
Pirbadian, S., Barchinger, S. E., Leung, K. M., Byun, H. S., Jangir, Y., Bouhenni, R. A., Reed, S. B., Romine, M. F., Saffarini, D. A., Shi, L., Gorby, Y. A., Golbeck, J. H. & El-Naggar, M. Y. 2014. Shewanella oneidensis MR-1 nanowires are outer membrane and periplasmic extensions of the extracellular electron transport components. Proceedings of the National Academy of Sciences of the United States of America 111, 12883–8.CrossRefGoogle ScholarPubMed
Popa, R., Badescu, A. & Kinkle, B. K. 2004. Pyrite framboids as biomarkers for iron-sulfur systems. Geomicrobiology Journal 21, 114.CrossRefGoogle Scholar
Prasad, V., Garg, R., Singh, V. & Thakur, B. 2007. Organic matter distribution pattern in Arabian Sea: Palynofacies analysis from the surface sediments off Karwar coast (west coast of India). Indian Journal of Marine Sciences 36, 399406.Google Scholar
Reguera, G., McCarthy, K. D., Metha, T., Nicoll, J. S., Tuominen, M. T. & Lovley, D. R. 2005. Extracellular electron transfer via microbial nanowires. Nature 435, 1098–101.CrossRefGoogle ScholarPubMed
Roberts, J. A., Bennett, P. C., Gonzalez, L. A., Macpherson, G. L. & Milliken, K. L. 2004. Microbial precipitation of dolomite in methanogenic groundwater. Geology 32 (4), 277–80.CrossRefGoogle Scholar
Sanchez-Navas, A., Martìn-Algarra, A., Rivadeneyra, M. A., Melchor, S., Martìn-Ramos, J. D. 2009. Crystal-growth behaviour in Ca–Mg carbonate bacterial spherulites. Crystal Growth and Design 9, 2690–9.CrossRefGoogle Scholar
Sanchez-Roman, M., Vasconcelos, C., Schmid, T., Dittrich, M., McKenzie, J. A., Zenobi, R. & Rivadeneyra, M. A. 2008. Aerobic microbial dolomite at the nanometer scale: implications for the geologic record. Geology 36, 879–82.CrossRefGoogle Scholar
Sassen, R., Roberts, H. H., Carney, R., Milkov, A. V., DeFreitas, D. A., Lanoil, B. & Zhang, C. 2004. Free hydrocarbon gas, gas hydrate, and authigenic minerals in chemosynthetic communities of the northern Gulf of Mexico continental slope: relation to microbial processes. Chemical Geology 205 (3–4), 195217.CrossRefGoogle Scholar
Sawlowicz, Z. 2000. Framboids: from their Origin to Application. Poland: Prace Mineralogiczne, 88 pp.Google Scholar
Schink, B. 2002. Synergistic interactions in the microbial world. Antonie Van Leeuwenhoek 81, 257–61.CrossRefGoogle ScholarPubMed
Schubert, C. J., Vazquez, F., Lösekann-Behrens, T., Knittel, K., Tonolla, M. & Boetius, A. 2011. Evidence for anaerobic oxidation of methane in sediments of a freshwater system (Lago di Cadagno). FEMS Microbiology Ecology 76, 2638.CrossRefGoogle Scholar
Shinn, E. A., Steinen, R. P., Lidz, B. H. & Swart, P. K. 1989. Whitings, a sedimentologic dilemma. Journal of Sedimentary Petrology 59, 147–61.CrossRefGoogle Scholar
Smol, J. 1988. Chrysophycean microfossils in paleolimnological studies. Palaeogeography, Palaeoclimatology, Palaeoecology 62, 287–97.CrossRefGoogle Scholar
Sondi, I. & Juracic, M. 2010. Whiting events and the formation of aragonite in Mediterranean Karstic Marine Lakes: new evidence on its biologically induced inorganic origin. Sedimentology 57, 8595.CrossRefGoogle Scholar
Sorrel, P., Oberhänsli, H., Boroffka, N. G. O., Nourgaliev, D., Dulski, P. & Röhl, U. 2007. Control of wind strength and frequency in the Aral Sea basin during the late Holocene. Quaternary Research 67, 371–82.CrossRefGoogle Scholar
Spadafora, A., Perri, E., McKenzie, J. A. & Vasconcelos, C. 2010. Microbial biomineralization processes forming modern Ca:Mg carbonate stromatolites. Sedimentology 57, 2740.CrossRefGoogle Scholar
Stams, A. J. M. & Plugge, C. M. 2009. Electron transfer in syntrophic communities of anaerobic bacteria and archaea. Nature Reviews Microbiology 7, 568–77.CrossRefGoogle ScholarPubMed
Suttle, C. A. 2007. Marine viruses – major players in the global ecosystem. Nature Reviews in Microbiology 5, 801–12.CrossRefGoogle ScholarPubMed
Swierczynski, T., Lauterbach, S., Dulski, P., Delgado, J., Merz, B. & Brauer, A. 2013. Mid- to late Holocene flood frequency changes in the northeastern Alps as recorded in varved sediments of Lake Mondsee (Upper Austria). Quaternary Science Reviews 80, 7890.CrossRefGoogle Scholar
Talbot, M. R. & Kelts, K. 1986. Primary and diagenetic carbonates in the anoxic sediments of Lake Bosumtwi, Ghana. Geology 14, 912–6.2.0.CO;2>CrossRefGoogle Scholar
Thauer, R. K. & Shima, S. 2008. Methane as fuel for anaerobic organisms. Annals of the NY Academy of Sciences 1125, 158–70.CrossRefGoogle Scholar
Turcq, B., Albuquerque, A. L. S., Cordeiro, R. C., Sifeddine, A., Simoes Filho, F. F. L., Souza, A. G., Abrão, J. J., Oliveira, F. B. L., Silva, A. O. & Capitâneo, J. 2002. Accumulation of organic carbon in five Brazilian lakes during the Holocene. Sedimentary Geology 148, 319–42.CrossRefGoogle Scholar
Valentine, D. L. & Reeburgh, W. S. 2000. New perspectives on anaerobic methane oxidation. Environmental Microbiology 2, 477–84.CrossRefGoogle ScholarPubMed
Vasconcelos, C. & McKenzie, J. A. 1997. Microbial mediation of modern dolomite precipitation and diagenesis under anoxic conditions (Lagoa Vermelha, Rio de Janeiro, Brazil). Journal of Sedimentary Research 67, 378–90.Google Scholar
Vasconcelos, C., McKenzie, J. A., Bernasconi, S., Grujic, D. & Tiens, A. J. 1995. Microbial mediation as a possible mechanism for natural dolomite formation at low temperatures. Nature 377, 220–2.CrossRefGoogle Scholar
Vigneron, A., Cruaud, P., Pignet, P., Caprais, J. C., Gayet, N., Cambon-Bonavita, M. A., Godfroy, A. & Toffin, L. 2013. Bacterial communities and syntrophic associations involved in anaerobic oxidation of methane process of the Sonora Margin cold seeps, Guaymas Basin. Environmental Microbiology, published online 13 December 2013. doi: 10.1111/1462-2920.12324.Google ScholarPubMed
Vincent, W. F., Whyte, L. G., Lovejoy, C., Greer, C. W., Laurion, I., Suttle, C. A., Corbeil, J. & Mueller, D. R. 2009. Arctic microbial ecosystems and impacts of extreme warming during the International Polar Year. Polar Science 3, 171–80.CrossRefGoogle Scholar
Vuillemin, A., Ariztegui, D., De Coninck, A. S., Lücke, A., Mayr, C., Schubert, C. J. & The Pasado Scientific Team. 2013. Origin and significance of diagenetic concretions in sediments of Laguna Potrok Aike, southern Argentina. Journal of Paleolimnology 50, 275–91.CrossRefGoogle Scholar
Waldron, S., Hall, A. J. & Fallick, A. E. 1999. Enigmatic stable isotope dynamics of deep peat methane. Global Biogeochemical Cycles 13 (1), 93100.CrossRefGoogle Scholar
Warren, J. 2000. Dolomite: occurrence, evolution and economically important associations. Earth-Science Reviews 52, 181.CrossRefGoogle Scholar
Warthmann, R., Lith, Y. V., Vasconcelos, C., McKenzie, J. A. & Karpoff, A. M. 2000. Bacterially induced dolomite precipitation in anoxic culture experiments. Geology 28, 1091–4.2.0.CO;2>CrossRefGoogle Scholar
Wilhelm, S. W. & Suttle, C. A. 1999. Viruses and nutrient cycles in the sea. Bioscience 49, 781–8.CrossRefGoogle Scholar
Wilkin, R. T. & Barnes, H. L. 1997. Formation processes of framboidal pyrite. Geochimica et Cosmochimica Acta 61, 323–39.CrossRefGoogle Scholar
Wilken, L. R., Kristiansen, J. & Jürgensen, T. 1995. Silica-scaled chrysophytes from the peninsula of Nuusuaq/Nûugssuaq. Nova Hedwigia 61, 355–66.Google Scholar
Wilkinson, A. N., Hall, R. I. & Smol, J. P. 1999. Chrysophyte cysts as paleolimnological indicators of environmental change due to cottage development and acidic deposition in the Muskoka-Haliburton region, Ontario, Canada. Journal of Paleolimnology 22, 1739.CrossRefGoogle Scholar
Wright, D. 1999. The role of sulphate-reducing bacteria and cyanobacteria in dolomite formation in distal ephemeral lakes of the Coorong region, South Australia. Sedimentary Geology 126, 147–57.CrossRefGoogle Scholar
Wright, D. T. & Oren, A. 2005. Non-photosynthetic bacteria and the formation of carbonates and evaporites through time. Geomicrobiology Journal 22, 2753.CrossRefGoogle Scholar
Wright, D. T. & Wacey, D. 2005. Precipitation of dolomite using sulphate-reducing bacteria from the Coorong Region, South Australia: significance and implications. Sedimentology 52, 9871008.CrossRefGoogle Scholar
Yau, S., Lauro, F. M., DeMaere, M. Z., Brown, M. V., Thomas, T., Raftery, M. J., Andrews-Pfannkoch, C., Lewis, M., Hoffman, J. M., Gibson, J. A. & Cavicchioli, R. 2011. Virophage control of antarctic algal host–virus dynamics. PNAS 108, 6163–8.CrossRefGoogle ScholarPubMed
Zeeb, B. A., Christie, C. E., Smol, J. P., Findlay, D., Kling, H. & Birks, H. J. B. 1994. Responses of diatom and chrysophyte assemblages in Lake 227 to experimental eutrophication. Canadian Journal of Fisheries and Aquatic Sciences 51, 2300–11.CrossRefGoogle Scholar
Zeeb, B. A., Duff, K. E. & Smol, J. P. 1990. Morphological descriptions and stratigraphic profiles of chrysophycean stomatocysts from the recent sediments of Little Round Lake, Ontario. Nova Hedwigia 51, 361–80.Google Scholar
Zeeb, B. A. & Smol, J. P. 1993. Postglacial chrysophycean cyst record from Elk Lake, Minnesota. In Elk Lake, Minnesota: Evidence for Rapid Climate Change in the North-Central United States, Geological Society of America Special Paper 276 (eds Bradbury, J. P. & Dean, W. E.), pp. 239–49. Boulder, Colorado: Geological Society of America.CrossRefGoogle Scholar
Zeeb, B. A. & Smol, J. P. 1995. A weighted-averaging regression and calibration model for inferring lakewater salinity using chrysophycean cysts from lakes in western Canada. International Journal of Salt Lake Research 4, 123.CrossRefGoogle Scholar
Supplementary material: File

Pacton supplementary material

Pacton supplementary material 1

Download Pacton supplementary material(File)
File 16 KB
Supplementary material: Image

Pacton supplementary material

Figure S1

Download Pacton supplementary material(Image)
Image 452 KB
Supplementary material: Image

Pacton supplementary material

Figure S2

Download Pacton supplementary material(Image)
Image 449 KB
Supplementary material: Image

Pacton supplementary material

Figure S3

Download Pacton supplementary material(Image)
Image 396 KB
Supplementary material: Image

Pacton supplementary material

Figure S4

Download Pacton supplementary material(Image)
Image 103 KB
13
Cited by

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Sedimentary facies analyses from nano- to millimetre scale exploring past microbial activity in a high-altitude lake (Lake Son Kul, Central Asia)
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Sedimentary facies analyses from nano- to millimetre scale exploring past microbial activity in a high-altitude lake (Lake Son Kul, Central Asia)
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Sedimentary facies analyses from nano- to millimetre scale exploring past microbial activity in a high-altitude lake (Lake Son Kul, Central Asia)
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *