Skip to main content Accessibility help
Hostname: page-component-568f69f84b-gcfkn Total loading time: 0.461 Render date: 2021-09-20T03:28:27.546Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Plate tectonic modelling: review and perspectives

Published online by Cambridge University Press:  14 February 2018

Chemin de Servasse, F – 74930 Reignier-Ésery, France
*Author for correspondence:


Since the 1970s, numerous global plate tectonic models have been proposed to reconstruct the Earth's evolution through deep time. The reconstructions have proven immensely useful for the scientific community. However, we are now at a time when plate tectonic models must take a new step forward. There are two types of reconstructions: those using a ‘single control’ approach and those with a ‘dual control’ approach. Models using the ‘single control’ approach compile quantitative and/or semi-quantitative data from the present-day world and transfer them to the chosen time slices back in time. The reconstructions focus therefore on the position of tectonic elements but may ignore (partially or entirely) tectonic plates and in particular closed tectonic plate boundaries. For the readers, continents seem to float on the Earth's surface. Hence, the resulting maps look closer to what Alfred Wegener did in the early twentieth century and confuse many people, particularly the general public. With the ‘dual control’ approach, not only are data from the present-day world transferred back to the chosen time slices, but closed plate tectonic boundaries are defined iteratively from one reconstruction to the next. Thus, reconstructions benefit from the wealth of the plate tectonic theory. They are physically coherent and are suited to the new frontier of global reconstruction: the coupling of plate tectonic models with other global models. A joint effort of the whole community of geosciences will surely be necessary to develop the next generation of plate tectonic models.

Review Article
Copyright © Cambridge University Press 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)


Adriasola Munoz, A., Harris, J., Glover, C., Goodrich, M., Hudson, L. & Ady, B. 2010. Modelling continental margin extension using combined rigid/deformable plate tectonic reconstructions. Search and Discovery Article #40603. Poster at AAPG Annual Convention and Exhibition, New Orleans, April 11–14.Google Scholar
Attewell, P. & Farmer, I. 1976. Principles of Engineering Geology. London: Chapman and Hall, 1045 pp.CrossRefGoogle Scholar
Bachtadse, V. & Briden, J. 1990. Paleomagnetic constraints on the position of Gondwana during Ordovician to Devonian times. In Palaeozoic Palaeogeography and Biogeography (eds McKerrow, W. & Scotese, C.), pp. 43–8. Geological Society of London, Memoir no. 12.Google Scholar
Bachtadse, V. & Briden, J. 1991. Palaeomagnetism of Devonian ring complexes from the Bayuda Desert – new constraints on the Apparent Polar Wander path for Gondwanaland. Geophysical Journal International 104, 635–46.CrossRefGoogle Scholar
Bacon, F. 1620. Novum Organum Scientiarum. Londini, apud Joannem Billium, Typographum Regium, 404 pp.Google Scholar
Baes, M., Govers, R. & Wortel, R. 2011. Switching between alternative responses of the lithosphere to continental collision. Geophysical Journal International 187, 1151–74.CrossRefGoogle Scholar
Baines, G., Cheadle, M., John, B. & Schwartz, J. 2008. The rate of oceanic detachment faulting at Atlantis Bank, SW Indian Ridge. Earth and Planetary Science Letters 273, 105–14.CrossRefGoogle Scholar
Barker, P. 2001. Scotia Sea regional tectonic evolution: implications for mantle flow and palaeocirculation. Earth-Science Reviews 55, 139.CrossRefGoogle Scholar
Bartol, J. & Govers, R. 2014. A single cause for uplift of the Central and Eastern Anatolian plateau? Tectonophysics 637, 116–36.CrossRefGoogle Scholar
Baumgartner, P. O. 2013. Mesozoic radiolarites – accumulation as a function of sea surface fertility on Tethyan margins and in ocean basins. Sedimentology 60, 292318.CrossRefGoogle Scholar
Beaumont, C., Jamieson, R., Nguyen, M. & Medvedev, S. 2004. Crustal channel flows: 1. Numerical models with applications to the tectonics of the Himalayan-Tibetan orogen. Journal of Geophysical Research 109, B06406. doi: 10.1029/2003JB002809, 29 pp.CrossRefGoogle Scholar
Benioff, H. 1955. Earthquake seismographs and associated instruments. Advances in Geophysics 2, 219–75.CrossRefGoogle Scholar
Berner, R. 1998. The carbon cycle and CO2 over Phanerozoic time: the role of land plants. Philosophical Transactions of the Royal Society of London B 353, 7582.CrossRefGoogle Scholar
Berner, R. 2006. GeoCarbSulf: a combined model for Phanerozoic atmospheric O2 and CO2. Geochimica et Cosmochimica Acta 70, 5653–64.CrossRefGoogle Scholar
Bird, P. 2003. An updated digital model of plate boundaries. Geochemistry, Geophysics, Geosystems (G3) 4, 1027–52.CrossRefGoogle Scholar
Blakey, R. 2008. Gondwana palaeogeography from assembly to breakup – a 500 m.y. odyssey. In Resolving the Late Paleozoic Ice Age in Time and Space (eds Fielding, C., Frank, T. & Isbell, J.), pp. 128. Geological Society of America, Special Paper no. 441.Google Scholar
Boucot, A. 1999. Southern African Phanerozoic marine invertebrates: biogeography, palaeoeology, climatology and comments on adjacent regions. Journal of African Earth Sciences 28, 129–43.CrossRefGoogle Scholar
Boucot, A., Xu, C., Scotese, C. & Morley, R. 2013. Phanerozoic palaeoclimate: an atlas of lithologic indicators of climate. SEPM Concepts in Sedimentology and Paleontology 11, Map Folio, 30 pp.Google Scholar
Bower, D., Gurnis, M. & Flament, N. 2015. Assimilating lithosphere and slab history in 4-D Earth models. Physics of the Earth and Planetary Interiors 238, 822.CrossRefGoogle Scholar
Bower, D., Gurnis, M. & Seton, M. 2013. Lower mantle structure from paleogeographically constrained dynamic Earth models. Geochemistry, Geophysics, Geosystems (G3) 14, 4463.CrossRefGoogle Scholar
Braun, J., Simon-Labric, T., Murray, K. & Reiners, P. 2014. Topographic relief driven by variations in surface rock density. Nature Geoscience 7, 534–40.CrossRefGoogle Scholar
Braun, J., van der Beek, P., Valla, P., Robert, X., Herman, F., Glotzbach, C., Pedersen, V., Perry, C., Simon-Labric, T. & Prigent, C. 2012. Quantifying rates of landscape evolution and tectonic processes by thermochronology and numerical modelling of crustal heat transport using Pecube. Tectonophysics 524–525, 128.CrossRefGoogle Scholar
Breuer, M., Wessling, S., Schmalzl, J. & Hansen, U. 2004. Effect of inertia in Rayleigh-Bénard convection. Physical Review E 69, 026302. doi: 10.1103/PhysRevE.69.026302, 10 pp.CrossRefGoogle ScholarPubMed
Brongniart, A. 1828. Prodomes d'une Histoire des Végétaux Fossiles. Paris: F. G. Levrault, 223 pp.Google Scholar
Brune, S., Popov, A. & Sobolev, S. 2013. Quantifying the thermo-mechanical impact of plume arrival on continental break-up. Tectonophysics 604, 51–9.CrossRefGoogle Scholar
Brunetti, M., Vérard, C. & Baumgartner, P. O. 2015. Modelling the Middle Jurassic Ocean Circulation. Journal of Palaeogeography 4, 371–83.CrossRefGoogle Scholar
Bullard, E., Everett, J. & Smith, G. 1965. The fit of the continents around the Atlantic. Philosophical Transactions of the Royal Society of London, Series A, Mathematical and Physical Sciences 258 (1088), 4151.CrossRefGoogle Scholar
Bunge, H.-P., Richards, M. & Baumgardner, J. 1997. A sensitivity study of 3-D spherical mantle convection at 10exp8 Rayleigh Number: effects of depth dependent viscosity, heating mode and endothermic phase change. Journal of Geophysical Research 102, 1199112007.CrossRefGoogle Scholar
Čadek, O. & Fleitout, L. 2003. Effect of lateral viscosity variations in the top 300 km on the geoid and dynamic topography. Geophysical Journal International 152, 566–80.CrossRefGoogle Scholar
Cande, S. & Stegman, D. 2011. Indian and African plate motions driven by the push force of the Réunion plume head. Nature 475, 4752.CrossRefGoogle ScholarPubMed
Carlson, R. L. & Raskin, G. S. 1984. Density of the ocean crust. Nature 311, 555–8.CrossRefGoogle Scholar
Cavazza, W., Roure, F., Spakman, W., Stampfli, G. & Ziegler, P. 2004. The Transmed Atlas; the Mediterranean region from crust to mantle. In The Mediterranean Consortium for the 32nd International Geological Congress, XXIII, 141 pp. with CD-Rom.Google Scholar
Chandler, M., Rind, D. & Ruedy, R. 1992. Pangaean climate during the Early Jurassic: GCM simulations and the sedimentary record of palaeoclimate. Geological Society of America Bulletin 104, 543–59.2.3.CO;2>CrossRefGoogle Scholar
Chumakov, N. 2004. Trends in global climate changes inferred from geological data. Stratigraphy and Geological Correlation 12, 117–38.Google Scholar
Chumakov, N. & Zharkov, M. 2002. Climate during Permian–Triassic biosphere reorganisations, Article 1: climate of the Early Permian. Stratigraphy and Geological Correlation 10, 586602.Google Scholar
Chumakov, N. & Zharkov, M. 2003. Climate during Permian–Triassic biosphere reorganisations, Article 2: climate of the Late Permian and Early Triassic: general inferences. Stratigraphy and Geological Correlation 11, 361–75.Google Scholar
Cloetingh, S., Wortel, R. & Vlaar, N. 1989. On the initiation of subduction zones. Pure and Applied Geophysics 129, 725.CrossRefGoogle Scholar
Cloos, M. 1993. Lithospheric buoyancy and collisional orogenesis: subduction of oceanic plateaus, continental margins, island arcs, spreading ridges, and seamounts. Geological Society of America Bulletin 105, 715–37.2.3.CO;2>CrossRefGoogle Scholar
Cocks, R. & Fortey, R. 1982. Faunal evidence for oceanic separations in the Palaeozoic of Britain. Journal of the Geological Society, London 139, 465–78.CrossRefGoogle Scholar
Cocks, R. & Torsvik, T. 2011. The Palaeozoic geography of Laurentia and western Laurussia: a stable craton with mobile margins. Earth-Science Reviews 106, 151.CrossRefGoogle Scholar
Cocks, R. & Torsvik, T. 2013. The dynamic evolution of the Palaeozoic geography of eastern Asia. Earth-Science Reviews 117, 4079.CrossRefGoogle Scholar
Conrad, C. & Lithgow-Bertelloni, C. 2002. How mantle slabs drive plate tectonics. Science 298, 207–9.CrossRefGoogle ScholarPubMed
Cope, J., Ingham, J. & Rawson, P. (eds) 1992. Atlas of Palaeogeography and Lithofacies. Geological Society of London, Memoir 13.Google Scholar
Courtillot, V., Davaille, A., Besse, J. & Stock, J. 2003. Three distinct types of hotspots in the Earth's mantle. Earth and Planetary Science Letters 205, 295308.CrossRefGoogle Scholar
Courtillot, V., Jaupart, C., Manighetti, I., Tapponnier, P. & Besse, J. 1999. On causal links between flood basalts and continental breakup. Earth and Planetary Science Letters 166, 177–95.CrossRefGoogle Scholar
Crameri, F., Tackley, P., Meilick, I., Gerya, T. & Kaus, J. 2012. A free plate surface and weak oceanic crust produce single-sided subduction on Earth. Geophysical Research Letters 39, L03306. doi: 10.1029/2011GL050046, 7 pp.CrossRefGoogle Scholar
Creer, K., Irving, E. & Runcorn, S. 1954. The direction of the geomagnetic field in remote epochs in Great Britain. Journal of Geomagnetism and Geoelectricity 6, 163–8.CrossRefGoogle Scholar
Cruciani, C., Carminati, E. & Doglioni, C. 2005. Slab dip vs. lithosphere age: no direct function. Earth and Planetary Science Letters 238, 298310.CrossRefGoogle Scholar
Dalziel, I. 1997. Neoproterozoic–Paleozoic geography and tectonics: review, hypothesis, environmental speculation. Geological Society of America Bulletin 109, 1642.2.3.CO;2>CrossRefGoogle Scholar
Dana, J. 1880. Manual of Geology. New York: Taylor & Co, 798 pp.Google Scholar
D'Aubuisson de Voisins, J.-F. 1828. Traité de Géognosie (nouvelle édition revue et corrigée). Strasbourg, 496 pp.Google Scholar
Davies, J. H. 2013. Global map of solid Earth surface heat flow. Geochemistry, Geophysics, Geosystems (G3) 14, 4608–23.CrossRefGoogle Scholar
Davies, J. H. & Davies, D. R. 2010. Earth's surface heat flux. Solid Earth 1, 524.CrossRefGoogle Scholar
Davies, D. R., Davies, J. H., Bollada, P., Hassan, O., Morgan, K. & Nithiarasu, P. 2013. A hierarchical mesh refinement technique for global 3-D spherical mantle convection modelling. Geoscientific Model Development 6, 1095–7.CrossRefGoogle Scholar
Davies, R., Goes, S., Davies, H., Schubert, B., Bunge, H.-P. & Ritsema, J. 2012. Reconciling dynamic and seismic models of Earth's lower mantle: the dominant role of thermal heterogeneity. Earth and Planetary Science Letters 353–354, 253–69.CrossRefGoogle Scholar
De Melo Garcia, S.-F. 2012. Restauração estrutural da haltectônica na porção central da bacia de Santos e implicações para os sistemas petrolíferos. Ph.D. thesis, Universidade Federal de Ouro Preto, Escola de Minas, Brasil, and Université de Cergy-Pontoise, Ecole doctorale Sciences et Ingénérie, France, 237 pp. Published thesis.Google Scholar
DeMets, C., Gordon, R., Argus, D. & Stein, S. 1994. Effect of recent revisions to the geomagnetic reversal time scale on estimates of current plate motions. Geophysical Research Letters 21, 2191–4.CrossRefGoogle Scholar
Dera, G. & Donnadieu, Y. 2012. Modeling evidences for global warming, Arctic seawater freshening, and sluggish oceanic circulation during the Early Toarcian anoxic event. Paleoceanography 27, PA2211. doi: 10.1029/2012PA002283, 15 pp.CrossRefGoogle Scholar
Dercourt, J. 2000. Atlas Peri-Tethys Palaeogeographical Maps. Paris: Gauthier-Villars/CCGM, 268 pp., 24 maps.Google Scholar
Dercourt, J., Ricou, L. & Vrielynck, B. (eds) 1993. Atlas Tethys Palaeoenvironmental Maps. Atlas and Explanatory Notes. Paris: Gauthier Villars, 307 pp., 14 maps.Google Scholar
Dewey, J. & Bird, J. 1970. Plate tectonics and geosynclines. Tectonophysics 10, 625–38.CrossRefGoogle Scholar
Dick, H., Lin, J. & Schouten, H. 2003. An ultraslow-spreading class of ocean ridge. Nature 426, 405–12.CrossRefGoogle ScholarPubMed
Dietz, R. 1961. Continent and ocean basin evolution by spreading of the sea floor. Nature 190, 854–7.CrossRefGoogle Scholar
Direen, N., Stagg, H., Symonds, P. & Norton, I. 2012. Variations in rift symmetry: cautionary examples from the Southern Rift System (Australia–Antarctica). In Conjugate Divergent Margins (eds Mohriak, W., Danforth, A., Post, P., Brown, D., Tari, G., Nemčok, A. & Sinha, S.), pp. 453–75. Geological Society of London, Special Publication no. 369.Google Scholar
Doglioni, C., Carminati, E., Cuffaro, M., Scrocca, D. 2007. Subduction kinematics and dynamic constraints. Earth-Science Reviews 83, 125–75.CrossRefGoogle Scholar
Domeier, M. & Torsvik, T. 2014. Plate tectonics in the late Paleozoic. Geoscience Frontiers 5, 303–50.CrossRefGoogle Scholar
Domeier, M., Van der Voo, R. & Torsvik, T. H. 2012. Paleomagnetism and Pangea: the road to reconciliation. Tectonophysics 514–517, 1443.CrossRefGoogle Scholar
Donnadieu, Y., Goddéris, Y. & Bouttes, N. 2009. Exploring the climatic impact of the continental vegetation on the Mesozoic atmospheric CO2 and climate history. Climate Past 5, 8596.CrossRefGoogle Scholar
Donnadieu, Y., Goddéris, Y., Pierrehumbert, R., Dromart, G., Fluteau, F. & Jacob, R. 2006 a. A GeoClim simulation of climatic and biogeochemical consequences of Pangea breakup. Geochemistry, Geophysics, Geosystems (G3) 7, 121.CrossRefGoogle Scholar
Donnadieu, Y., Pierrehumbert, R., Jacob, R. & Fluteau, F. 2006 b. Modelling the primary control of paleogeography on Cretaceous climate. Earth and Planetary Science Letters 248, 426–37.CrossRefGoogle Scholar
Duarte, J., Rosas, F., Terrinha, P., Schellart, W., Boutelier, D., Gutscher, M.-A. & Ribeiro, A. 2013. Are subduction zones invading the Atlantic? Evidence from the southwest Iberia margin. Geology 41, 839– 42.CrossRefGoogle Scholar
Duretz, T. & Gerya, T. 2013. Slab detachment during continental collision: influence of crustal rheology and interaction with lithospheric delamination. Tectonophysics 602, 124–40.CrossRefGoogle Scholar
Du Toit, A. 1937. Our Wandering Continents: An Hypothesis of Continental Drifting: ‘Africa Forms the Key’. Edinburgh: Oliver & Boyd, 366 pp.Google Scholar
Eagles, G. & Jokat, W. 2014. Tectonic reconstructions for paleobathymetry in Drake Passage. Tectonophysics 611, 2850.CrossRefGoogle Scholar
Eglington, B. M., Reddy, S. M. & Evans, D. A. D. 2009. The IGCP 509 database system: design and application of a tool to capture and illustrate the litho- and chrono-statigraphic information for Palaeoproterozoic tectonic domains, large igneous provinces, and ore deposits; with examples from southern Africa. In Palaeoproterozoic Supercontinents and Global Evolution (eds Reddy, S. M., Mazumder, R., Evans, D. A. D. & Collins, A. S.), pp. 2747. Geological Society of London, Special Publication no. 323.Google Scholar
Ferrari, O., Hochard, C. & Stampfli, G. 2008. An alternative plate tectonic model for the Palaeozoic – Early Mesozoic Palaeotethyan evolution of Southeastern Asia (Northern Thailand – Burma). Tectonophysics 451, 346–65.CrossRefGoogle Scholar
Flament, N. 2014. Linking plate tectonics and mantle flow to Earth's topography. Geology 42, 927–8.CrossRefGoogle Scholar
Flament, N., Gurnis, M., Williams, S., Seton, M., Skogseid, J., Heine, C. & Müller, R. D. 2014. Topographic asymmetry of the South Atlantic from global models of mantle flow and lithosphere stretching. Earth and Planetary Science Letters 387, 107–19.CrossRefGoogle Scholar
Flögel, S., Wold, C. & Hay, W. 2000. Evolution of sediments and ocean salinity. In Abstracts Volume, 31st International Geological Congress, Rio de Janeiro – Brazil, August 6–17, 2000, 4 pp. and CD-Rom.Google Scholar
Fluteau, F. 2001. The Late Permian climate. What can be inferred from climate modelling concerning Pangea scenarios and Hercynian range altitude? Palaeogeography, Palaeoclimatology, Palaeoecology 167, 3971.CrossRefGoogle Scholar
Fluteau, F. 2013. L’évolution des climats à l’échelle des temps géologiques; Le rôle des changements paléogéographiques. In Paléoclimatologie: Enquête sur les climats anciens – Tome II (eds Duplessy, J.-C. & Ramstein, G.), pp. 79138. Paris: EDP Sciences & CNRS Editions.Google Scholar
Fluteau, F., Besse, J., Broutin, J. & Ramstein, G. 2001. The Late Permian climate. What can be inferred from climate modelling concerning Pangea scenarios and Hercynian range altitude? Palaeogeography, Palaeoclimatology, Palaeoecology 167, 3971.CrossRefGoogle Scholar
Fluteau, F., Ramstein, G., Besse, J., Guiraud, R. & Masse, J.-P. 2007. Impacts of palaeogeography and sea level changes on Mid-Cretaceous climate. Palaeogeography, Palaeoclimatology, Palaeoecology 247, 357–81.CrossRefGoogle Scholar
Follows, M. & Dutkiewicz, S. 2011. Modeling diverse communities of marine microbes. Annual Review of Marine Science 3, 427–51.CrossRefGoogle ScholarPubMed
Forsyth, D. & Uyeda, S. 1975. On the relative importance of the driving forces of plate motion. Geophysical Journal of the Royal Astronomical Society 43, 163200.CrossRefGoogle Scholar
François, L. & Walker, J. 1992. Modelling the Phanerozoic carbon cycle and climate: constraints from the 87Sr/86Sr isotopic ratio of seawater. American Journal of Science 292, 81135.CrossRefGoogle ScholarPubMed
Frohlich, C. 1987. Kiyoo Wadati and early research on deep focus earthquakes: introduction to special section on deep and intermediate focus earthquakes. Journal of Geophysical Research 92 (B13), 13777–88.CrossRefGoogle Scholar
Fryer, P. 2002. Recent studies of serpentinite occurrences in the oceans: mantle-ocean interactions in the plate tectonic cycle. Chemie der Erde, Geochemistry 62, 257302.CrossRefGoogle Scholar
Gaetani, M., Dercourt, J. & Vrielynck, B. 2003. The Peri-Tethys Programme: achievements and results. Episodes 26, 7993.Google Scholar
Gahagan, L., Scotese, C., Royer, J.-Y., Sandwell, D., Winn, J., Tomlins, R., Ross, M., Newman, J., Müller, D., Mayes, C., Lawver, L. & Heubeck, C. 1988. Tectonic fabric map of the ocean basins from satellite altimetry data. Tectonophysics 155, 126.CrossRefGoogle Scholar
Gaina, C., Müller, D., Royer, J.-Y., Stock, J., Hardebeck, J. & Symonds, P. 1998 a. The tectonic history of the Tasman Sea: a puzzle with 13 pieces. Journal of Geophysical Research 103 (B6), 12413–33.CrossRefGoogle Scholar
Gaina, C., Roest, W., Müller, D. & Symonds, P. 1998 b. The opening of the Tasman Sea: a gravity anomaly animation. Earth Interactions 2 (4). doi: 10.1175/1087-3562(1998)002<0001:TOOTTS>2.3.CO; 2, 23 pp.2.3.CO;2>CrossRefGoogle Scholar
Gerya, T. 2013. Three-dimensional thermomechanical modelling of oceanic spreading initiation and evolution. Physics of the Earth and Planetary Interiors 214, 3552.CrossRefGoogle Scholar
Gerya, T. 2011. Future directions in subduction modelling. Journal of Geodynamics 52, 344–78.CrossRefGoogle Scholar
Goddéris, Y., Donnadieu, Y., Lefebvre, V., Le Hir, G. & Nardin, E. 2012. Tectonic control of continental weathering, atmospheric CO2, and climate over Phanerozoic times. Comptes Rendus Geoscience 344, 568–85.CrossRefGoogle Scholar
Golonka, J. 2000. Cambrian-Neogene Plate Tectonic Maps. Wydawn. Uniwersytetu Jagiellonskiego, 125 pp. and 36 maps.Google Scholar
Golonka, J. 2007 a. Phanerozoic paleoenvironment and paleolithofacies maps: Early Paleozoic. Geologia 35, 589654.Google Scholar
Golonka, J. 2007 b. Phanerozoic paleoenvironment and paleolithofacies maps: Late Paleozoic. Geologia 33, 145209.Google Scholar
Golonka, J. 2007 c. Phanerozoic paleoenvironment and paleolithofacies maps: Mesozoic. Geologia 33, 211–64.Google Scholar
Golonka, J. 2009. Phanerozoic paleoenvironment and paleolithofacies maps: Cenozoic. Geologia 35, 507–85.Google Scholar
Golonka, J., Ross, M. & Scotese, C. 1994. Phanerozoic paleogeographic and paleoclimatic modelling maps. In Pangea: Global Environment and Resources (eds Embry, A., Beauchamp, B. & Glass, D.), pp. 147. Memoir of the Canadian Society of Petroleum Geologists 17.Google Scholar
Govers, R. & Wortel, R. 2005. Lithosphere tearing at Step faults: response to edges of subduction zones. Earth and Planetary Science Letters 236, 505–23.CrossRefGoogle Scholar
Grand, S., van der Hilst, R. & Widiyantoro, S. 1997. Global seismic tomography: a snapshot of convection in the earth. GSA Today 7, 17.Google Scholar
Grunow, A. 1999. Gondwana events and palaeogeography: a palaeomagnetic review. Journal of African Earth Sciences 28, 5369.CrossRefGoogle Scholar
Gurnis, M., Turner, M., Zahirovic, S., DiCaprio, L., Spasojevic, S., Müller, D., Boyden, J., Seton, M., Constantin Manea, V. & Bower, D. 2012. Plate tectonic reconstructions with continuously closing plates. Computers & Geosciences 38, 3542.CrossRefGoogle Scholar
Hafkenscheid, E., Warners-Ruckstuhl, K., van Oosterhoot, C., Bergman, S., Davies, H., Govers, R., Hochard, C., Kennan, L., Ross, M., Stampfli, G., Vérard, C., Webb, P. & Wortel, R. 2013. Integrating plate tectonic reconstruction and mantle dynamics: a valuable aid in frontier exploration. Poster #EGU2013-3204 at the EGU General Assembly, Vienna.Google Scholar
Hafkenscheid, E., Wortel, R. & Spakman, W. 2006. Subduction history of the Tethyan region derived from seismic tomography and tectonic reconstructions. Journal of Geophysical Research 111, B08401. doi: 10.1029/2005JB003791, 26 pp.CrossRefGoogle Scholar
Hall, R. 2012. Late Jurassic-Cenozoic reconstructions of the Indonesian region and the Indian Ocean. Tectonophysics 570–571, 141.CrossRefGoogle Scholar
Hallam, A. 1985. A review of Mesozoic climates. Journal of the Geological Society, London 142, 433–45.CrossRefGoogle Scholar
Harris, J., Ashley, A., Otto, S., Valdes, P., Crossley, R., Preston, R., Watson, J., Goodrich, M. & Team, Merlin + Project. 2017. Paleogeography and paleo-Earth systems in the modeling of marine paleoproductivity: A prerequisite for the prediction of petroleum source rocks. In Petroleum System Case Studies: AAPG Memoir (eds AbuAli, M. & Moretti, I.). vol. 114, pp. 3760.Google Scholar
Hay, W. W., DeConto, R. M., Wold, C. N., Wilson, K. M., Voigt, S., Schulz, M., Rossby-Wold, A., Dullo, W.-C., Ronov, A. B., Balukhovsky, A. N. & Söding, E. 1999. Alternative global Cretaceous paleogeography. In Evolution of the Cretaceous Ocean-Climate System (eds Barrera, E. & Johnson, C. C.), pp. 147. Geological Society of America, Special Paper 332.Google Scholar
Hay, W. & Flögel, S. 2012. New thoughts about the Cretaceous climate and oceans. Earth-Science Reviews 115, 262–72.CrossRefGoogle Scholar
Hay, W., Wold, C., Söding, E. & Flögel, S. 2001. Evolution of sediment fluxes and ocean salinity. In Geologic Modelling and Simulation: Sedimentary Systems (eds Merriam, D. & Davies, J.), pp. 153–67. Dordrecht, The Netherlands: Kluwer Academic/Plenum Publishers.CrossRefGoogle Scholar
Haywood, A., Valdes, P. & Markwick, P. 2004. Cretaceous (Wealden) climates: a modelling perspective. Cretaceous Research 25, 303–11.CrossRefGoogle Scholar
Heidbach, O., Tingay, M., Barth, A., Reinecker, J., Kurfeß, D. & Müller, B. 2009. The World Stress Map Based on the Database Release 2008, Equatorial Scale 1:46,000,000. Paris: Commission for the Geological Map of the World. doi: 10.1594/GFZ.WSM.Map2009.Google Scholar
Hellinger, S. 1981. The uncertainties in finite rotations in plate tectonics. Journal of Geophysical Research 86, 9312–8.CrossRefGoogle Scholar
Hess, H. 1962. History of ocean basins. In Petrologic Studies: A Volume to Honor A. F. Buddington (eds Engel, A. E. J., James, H. L. & Leonard, B. F.), pp. 599620. New York: Geological Society of America.Google Scholar
Hewitt, P., Lyons, S., Suchocki, J. & Yeh, J. 2007. Conceptual Integrated Science. San Francisco: Pearson Education Inc., 668 pp.Google Scholar
Hochard, C., Vérard, C. & Baumgartner, P. 2011. Geodynamic evolution of the Earth over 600 Ma: implications for palaeo-climatic indicators. Poster #AGU2011-pp13d-1849 at the AGU Fall Meeting, San Francisco.Google Scholar
Hoffman, P. 1991. Did the breakout of Laurentia turn Gondwanaland inside-out? Science 252 (5011), 1409–12.CrossRefGoogle ScholarPubMed
Holmes, A. 1913. The Age of the Earth. London: Harper, 196 pp.Google Scholar
Holmes, A. 1944. Principles of Physical Geology. London: Thomas Nelson & Sons, Ltd, 628 pp.Google Scholar
Howell, D. 1995. Principles of Terrane Analysis: New Applications for Global Tectonics. 2nd edition. Topics in the Earth Sciences 8. London: Chapman & Hall, 224 pp.Google Scholar
Howell, D., Jones, D. & Schermer, E. 1985. Tectonostratigraphic Terranes of the Circum-Pacific Region. CircumPacific Council for Energy and Mineral Resources, Earth Science Series vol. 1, pp. 3–30.Google Scholar
Hughes, N. F. (ed.) 1973. Organisms and Continents Through Time: A Symposium. Special Papers in Palaeontology 12. London: The Palaeontological Association, 334 pp.Google Scholar
Huismans, R. & Beaumont, C. 2007. Roles of lithospheric strain softening and heterogeneity in determining the geometry of rifts and continental margins. In Imaging, Mapping and Modelling Continental Lithosphere Extension and Breakup (eds. Karner, G., Manatschal, G. & Pinheiro, L.), pp. 111–38. Geological Society of London, Special publication no. 282.Google Scholar
Isacks, B., Oliver, J. & Sykes, L. 1968. Seismology and the new global tectonics. Journal of Geophysical Research 73, 5855–99.CrossRefGoogle Scholar
Jamieson, R., Beaumont, C., Medvedev, S. & Nguyen, M. 2004. Crustal channel flows: 2. Numerical models with applications for metamorphism of the Himalayan-Tibetan orogen. Journal of Geophysical Research 109, B06407. doi: 10.1029/2003JB002811, 24 pp.CrossRefGoogle Scholar
Jordan, T. 1978. Composition and development of the continental tectosphere. Nature 274, 544–8.CrossRefGoogle Scholar
Kamesh Raju, K., Samudrala, K., Drolia, R., Amarnath, D., Ramachandran, R. & Mudholkar, A. 2012. Segmentation and morphology of the Central Indian Ridge between 3°S and 11°S, Indian Ocean. Tectonophysics 554–557, 114–26.CrossRefGoogle Scholar
Kaplan, J., Bigelow, N., Prentice, I., Harrison, S., Bartlein, P., Christensen, T., Cramer, W., Matveyeva, N., McGuire, A., Murray, D., Razzhivin, V., Smith, B., Walker, D., Anderson, P., Andreev, A., Brubaker, L., Edwards, M. & Lozhkin, A. 2003. Climate change and Arctic ecosystems: 2. Modeling, paleodata-model comparisons, and future projections. Journal of Geophysical Research 108, 8171. doi: 10.1029/2002JD002559, 17 pp.CrossRefGoogle Scholar
Kent, D. & Van der Voo, R. 1990. Palaeozoic palaeogeography from palaeomagnetism of the Atlantic-bordering continents. In Palaeozoic Palaeogeography and Biogeography (eds McKerrow, W. & Scotese, C.), pp. 4956. Geological Society of London, Memoir no. 12.Google Scholar
Kergoat, G., Bouchard, P., Clamens, A.-L., Abbate, J., Jourdan, H., Jabbour-Zahab, R., Genson, G., Soldati, L. & Condamine, F. 2014. Cretaceous environmental changes led to high extinction rates in a hyperdiverse beetle family. BMC Evolutionary Biology 14, 220. doi: 10.1186/s12862-014-0220-1.CrossRefGoogle Scholar
Klein, G. (ed.) 1994. Pangea: Paleoclimate, Tectonics, and Sedimentation During Accretion, Zenith, and Breakup of a Supercontinent. The Geological Society of America, Special Paper 288.Google Scholar
Kneller, E., Johnson, C., Karner, G., Einhorn, J. & Queffelec, T. 2012. Inverse methods for modeling non-rigid plate kinematics: application to Mesozoic plate reconstructions of the Central Atlantic. Computers & Geosciences 49, 217–30.CrossRefGoogle Scholar
Lagabrielle, Y., Chauvet, A., Ulrich, M. & Guillot, S. 2013. Passive obduction and gravity-driven emplacement of large ophiolitic sheets: the New Caledonia ophiolite (SW Pacific) as a case study? Bulletin de la Société géologique de France 6, 373–84.Google Scholar
Laskar, J., Fienga, A., Gastineau, M. & Manche, H. 2011. La2010: a new orbital solution for the long-term motion of the Earth. Astronomy & Astrophysics 532, A89. doi: 10.1051/0004-6361/201116836, 15 pp.CrossRefGoogle Scholar
Le Grand, H. 2002. Plate tectonics, terranes and continental geology. In The Earth Inside and Out; Some Major Contributions to Geology in the Twentieth Century (ed. Oldroyd, D.), pp. 199213. London: Geological Society of London.Google Scholar
Le Hir, G., Donnadieu, Y., Goddéris, Y., Meyer-Berthaud, B., Ramstein, G. & Blakey, R. 2011. The climate change caused by the land plant invasion in the Devonian. Earth and Planetary Science Letters 310, 203–12.CrossRefGoogle Scholar
Le Pichon, X. 1968. Sea floor spreading and continental drift. Journal of Geophysical Research 73, 3661– 97.CrossRefGoogle Scholar
Li, Z.-X., Bogdanova, S., Collins, A., Davidson, A., De Waele, B., Ernst, R., Fitzsimons, I., Fuck, R., Gladkochub, D., Jacobs, J., Karlstrom, K., Lu, S., Natapov, L., Pease, V., Pisarevsky, S., Thrane, K. & Vernikovsky, V. 2008. Assembly, configuration, and break-up history of Rodinia: a synthesis. Precambrian Research 160, 179210.CrossRefGoogle Scholar
Li, Z.-X. & Powell, C. 2001. An outline of the palaeogeographic evolution of the Australasian region since the beginning of the Neoproterozoic. Earth-Science Reviews 53, 237–77.CrossRefGoogle Scholar
Manatschal, G. & Müntener, O. 2009. A type sequence across an ancient magma-poor ocean-continent transition: the example of the western Alpine Tethys ophiolites. Tectonophysics 473, 419.CrossRefGoogle Scholar
Markwick, P. 2007. The palaeogeographic and palaeoclimatic significance of climate proxies for data-model comparisons. In Deep-Time Perspectives on Climate Change: Marrying the Signal from Computer Models and Biological Proxies (eds Williams, M., Haywood, A., Gregory, J. & Schmidt, D.), pp. 251312. The Micropalaeontological Society, Special Publication. The Geological Society of London.CrossRefGoogle Scholar
Markwick, P. & Valdes, P. 2004. Palaeo-digital elevation models for use as boundary conditions in coupled ocean-atmosphere GCM experiments: a Maastrichian (late Cretaceous) example. Palaeogeography, Palaeoclimatology, Palaeoecology 213, 3763.CrossRefGoogle Scholar
Matthews, K., Maloney, K. T., Zahirovic, S., Williams, S. E. & Müller, R. D. 2016. Global plate boundary evolution and kinematics since the late Paleozoic. Global and Planetary Change 146, 226–50.CrossRefGoogle Scholar
May, D., Schellart, W. & Moresi, L. 2013. Overview of adaptative finite element analysis in computational geodynamics. Journal of Geodynamics 70, 120.CrossRefGoogle Scholar
McElhinny, M., Powell, C. & Pisarevsky, S. 2003. Paleozoic terranes of eastern Australia and the drift history of Gondwana. Tectonophysics 362, 4165.CrossRefGoogle Scholar
McKenzie, D. & Parker, R. 1967. The North Pacific: an example of tectonics on a sphere. Nature 216, 1276– 80.CrossRefGoogle Scholar
McKerrow, W. & Scotese, C. (eds) 1990. Palaeozoic, Palaeogeography and Biogeography. Geological Society of London, Memoir no. 12, 435 pp.Google Scholar
McMenamin, M. & McMenamin, D. 1990. The Emergence of Animals: The Cambrian Breakthrough. New York: Columbia University Press, 217 pp.Google Scholar
Meert, J. 2012. What's in a name? The Columbia (Paleopangaea/Nuna) supercontinent. Gondwana Research 21, 987–93.CrossRefGoogle Scholar
Meert, J. G., van der Voo, R., Powell, C. McA., Li, Z.-X., McElhinny, M. W., Chen, Z. & Symons, D. T. A. 1993. A plate-tectonic speed limit? Nature 363, 216–7.CrossRefGoogle Scholar
Metcalfe, I. 2011. Tectonic framework and Phanerozoic evolution of Sundaland. Gondwana Research 19, 321.CrossRefGoogle Scholar
Michael, P., Langmuir, C., Dick, H., Snow, J., Goldstein, S., Graham, D., Lehnert, K., Kurras, G., Jokat, W., Muhe, R. & Edmonds, H. 2003. Magmatic and amagmatic seafloor generation at the ultraslow-spreading Gakkel ridge, Arctic Ocean. Nature 423, 956–61.CrossRefGoogle ScholarPubMed
Morel, P. & Irving, E. 1978. Tentative paleocontinental maps for the Early Phanerozoic and Proterozoic. The Journal of Geology 86, 535–61.CrossRefGoogle Scholar
Morgan, J. 1968. Rises, trenches, great faults, and crustal blocks. Journal of Geophysical Research 73, 1959–82.CrossRefGoogle Scholar
Moulin, M., Aslanian, D. & Unternehr, P. 2010. A new starting point for the South and Equatorial Atlantic Ocean. Earth-Science Reviews 98, 137.CrossRefGoogle Scholar
Mueller, S. & Phillips, R. 1991. On the initiation of subduction. Journal of Geophysical Research 96, 651–65.CrossRefGoogle Scholar
Müller, R. D. 2010. Sinking continents. Nature Geoscience 3, 7980.CrossRefGoogle Scholar
Müller, R. D., Dutkiewicz, A., Seton, M. & Gaina, C. 2013. Seawater chemistry driven by supercontinent assembly, breakup and dispersal. Geology 41, 907–10.CrossRefGoogle Scholar
Müller, R. D., Dyksterhuis, S. & Rey, P. 2012. Australian paleo-stress fields and tectonic reactivation over the past 100 Ma. Australian Journal of Earth Sciences 59, 1328.CrossRefGoogle Scholar
Müller, R. D., Roest, W., Royer, J.-Y., Gahagan, L. & Sclater, J. 1996. Age of the Ocean Floor. World Dara Center-A for Marine Geology and Geophysics Report MGG-12, Data Announcement 96-MGG-04. Boulder: National Geophysical Data Center, 1 pp.Google Scholar
Müller, R. D., Roest, W., Royer, J.-Y., Gahagan, L. & Sclater, J. 1997. Digital isochrons of the World's ocean floor. Journal of Geophysical Research 102, 3211–4.CrossRefGoogle Scholar
Müller, R. D., Royer, J.-Y. & Lawver, L. 1993. Revised plate motion relative to the hotspots from combined Atlantic and Indian Ocean hotspot tracks. Geology 21, 275–8.2.3.CO;2>CrossRefGoogle Scholar
Müller, R. D., Sdrolias, M., Gaina, C. & Roest, W. 2008. Age, spreading rates, and spreading asymmetry of the world's ocean crust. Geochemistry, Geophysics, Geosystems (G3) 9 (4), Q04006. doi: 10.1029/2007GC001743, 19 pp.CrossRefGoogle Scholar
Oliver, J. & Isacks, B. 1967. Deep earthquake zones, anomalous structures in the upper mantle, and the lithosphere. Journal of Geophysical Research 72, 4259–75.CrossRefGoogle Scholar
Ortelius, A. 1570. Thesaurus Geographicus. Antwerpen: Plantin, 1587, 736 pp.Google Scholar
Parrish, J. 1985. Latitudinal Distribution of Land and Shelf and Absorbed Solar Radiation During the Phanerozoic. United States Geological Survey, Open-File Report, 85-31, 21 pp.CrossRefGoogle Scholar
Parrish, J., Ziegler, A. & Scotese, C. 1982. Rainfall patterns and the distribution of coals and evaporates in the Mesozoic and Cenozoic. Palaeogeography, Palaeoclimatology, Palaeoecology 40, 67101.CrossRefGoogle Scholar
Perroud, M., Brunetti, M. & Vérard, C. 2015. Sensitivity of the ocean system to the bathymetry in numerical simulations of climate. Poster #EGU2015-5336, European Geophysical Union meeting, Vienna, April 14th.Google Scholar
Pindell, J. & Kennan, L. 2009. Tectonic evolution of the Gulf of Mexico, Caribbean and northern South America in the mantle reference frame: an update. In The Origin and Evolution of the Caribbean Plate (eds James, K., Lorente, M. & Pindell, J.), pp. 155. Geological Society of London, Special Publication no. 328.Google Scholar
Pohl, A., Donnadieu, Y., Le Hir, G., Buoncristiani, J.-F. & Vennin, E. 2014. Effect of the Ordovician paleogeography on the (in)stability of the climate. Climate of the Past – Discussions 10, 2767–804.CrossRefGoogle Scholar
Püthe, C. & Gerya, T. 2014. Dependence of mid-ocean ridge morphology on spreading rate in numerical 3-D models. Gondwana Research 25, 270–83.CrossRefGoogle Scholar
Renaut, R. 1994. Carbonate and evaporite sedimentation at Clinton Lake, British Columbia, Canada. In Palaeoclimate and Basin Evolution of Playa Systems (ed. Rosen, R.), pp. 4968. Geological Society of America, Special Paper no. 289.CrossRefGoogle Scholar
Ribeiro, A. 2002. Soft Plate and Impact Tectonics. Berlin: Springer, 324 pp.CrossRefGoogle Scholar
Ricard, Y., Doglioni, C. & Sabadini, R. 1991. Differential rotation between lithosphere and mantle: a consequence of lateral mantle viscosity variations. Journal of Geophysical Research B 96, 8407–15.CrossRefGoogle Scholar
Rogers, J. & Santosh, M. 2002. Configuration of Columbia, a Mesoproterozoic supercontinent. Gondwana Research 5, 522.CrossRefGoogle Scholar
Rogers, J. & Santosh, M. 2003. Supercontinent in Earth History. Gondwana Research 6, 357–68.CrossRefGoogle Scholar
Ronov, A., Khain, V. & Balukhovsky, A. 1989. Atlas of Lithological–Paleogeographical Maps of the World, Mesozoic and Cenozoic of Continents and Oceans. Leningrad: U.S.S.R Academy of Sciences, 79 pp.Google Scholar
Ronov, A., Khain, V., Blukhovsky, A. & Seslavinsky, K. 1980. Quantitative analysis of Phanerozoic sedimentation. Sedimentary Geology 25, 311–25.CrossRefGoogle Scholar
Ronov, A., Khain, V. & Seslavinsky, K. 1984. Atlas of Lithological–Paleogeographical Maps of the World, Late Precambrian and Paleozoic of Continents. Leningrad: U.S.S.R Academy of Sciences, 70 pp.Google Scholar
Ross, M. I. & Scotese, C. R. 1988. A hierarchical model of the Gulf of Mexico and Caribbean region. Tectonophysics 155, 139–68.CrossRefGoogle Scholar
Ross, M. & Scotese, C. 2000. PaleoGIS/Arcview 3.5. Paleomap Project. Arlington: University of Texas.Google Scholar
Ross, M., Scotese, C. & Otto-Bliesner, B. 1992. Phanerozoic paleoclimate simulations: a comparison of the parametric climate model and the low resolution climate model. The Geological Society of America (GSA), Abstracts A89, Annual Meeting 1992, Cincinnati.Google Scholar
Rowley, D., Raymond, A., Totman Parrish, J., Lottes, A., Scotese, C. & Ziegler, A. 1985. Carboniferous paleogeographic, phytogeographic, and paleoclimatic reconstructions. International Journal of Coal Geology 5, 742.CrossRefGoogle Scholar
Royer, J.-Y., Müller, D., Gahagan, L., Lawver, L., Mayes, C., Nürnberg, D. & Sclater, J. 1992. A Global Isochron Chart. University of Texas, Institute for Geophysics Technical Report, 117, 38 pp.Google Scholar
Schardt, H. 1893. Sur l'origine des Préalples romandes. Archives de physique et des sciences naturelles de Genève 3, 570–83.Google Scholar
Schettino, A. & Scotese, C. 2005. Apparent polar wander paths for the major continents (200 Ma to the present day): a palaeomagnetic reference frame for global plate tectonic reconstructions. Geophysical Journal International 163, 727–59.CrossRefGoogle Scholar
Schettino, A. & Turco, E. 2011. Tectonic history of the western Tethys since the Late Triassic. GSA Bulletin 123, 89105.CrossRefGoogle Scholar
Schmalzl, J., Houseman, G. & Hansen, U. 1996. Mixing in vigorous, time-dependent three-dimensional convection and application to Earth's mantle. Journal of Geophysical Research 101, 21847–58.CrossRefGoogle Scholar
Schmidt, P., Powell, C., Li, Z.-X. & Thrupp, G. 1990. Reliability of Palaeozoic palaeomagnetic poles and APWP of Gondwanaland. In Reliability of Palaeomagnetic Data (eds Schmidt, P. & Van der Voo, R.). Tectonophysics 184, 87100.Google Scholar
Schreiber, T. 2000. Measuring information transfer. Physical Review Letters 85, 461–4.CrossRefGoogle ScholarPubMed
Scotese, C. 1976. A continental drift ‘flip book’. Computers and Geology 2, 13116.Google Scholar
Scotese, C. 2015. Plate tectonics driving mechanisms: some simple rules that explain why the plates move the way we do. Technical Report. doi: 10.13140/2.1.3376. 8325.Google Scholar
Scotese, C. & Baker, C. 1975. Continental drift reconstructions and animation. Journal of Geological Education 23, 167–71.CrossRefGoogle Scholar
Scotese, C., Bambach, R., Barton, C., Van der Voo, R. & Ziegler, A. 1979. Paleozoic base maps. Journal of Geology 87, 217–77.CrossRefGoogle Scholar
Scotese, C. & Barrett, S. 1990. Gondwana's movement over the South Pole during the Palaeozoic: evidence from lithological indicators of climate. In Palaeozoic Palaeogeography and Biogeography (eds McKerrow, W. & Scotese, C.), pp. 7585. Geological Society of London, Memoir no. 12.Google Scholar
Scotese, C. R., Gahagan, L. M., & Larson, R. L. 1988. Plate tectonic reconstructions of the Cretaceous and Cenozoic ocean basins. In The 8th Geodynamics Symposium, Mesozoic and Cenozoic Plate Reconstructions (eds Scotese, C. R. & Sager, W. W.). Tectonophysics 155, 261–83.CrossRefGoogle Scholar
Sellwood, B. & Valdes, P. 2008. Jurassic climates. Proceedings of the Geologists’ Association 119, 517.CrossRefGoogle Scholar
Sengör, A., Dewey, F. & Robertson, A. 1990. Terranology: vice or virtue? Philosophical Transactions of the Royal Society of London A331, 457–77.CrossRefGoogle Scholar
Seton, M., Müller, D., Zahirovic, S., Gaina, C., Torsvik, T., Shephard, G., Talsma, A., Gurnis, M., Turner, M., Maus, S. & Chandler, M. 2012. Global continental and ocean basin reconstructions since 200 Ma. Earth-Science Reviews 113, 212–70.CrossRefGoogle Scholar
Seton, M., Whittaker, J., Wessel, P., Müller, D., DeMets, C., Merkouriev, S., Cande, S., Gaina, C., Eagles, G., Granot, R., Stock, J., Wright, N. & Williams, S. 2014. Community infrastructure and repository for marine magnetic identifications. Geochemistry, Geophysics, Geosystems 15, 1629–41.CrossRefGoogle Scholar
Shaviv, N. & Veizer, J. 2003. Celestial driver of Phanerozoic climate? GSA Today 13, 410.2.0.CO;2>CrossRefGoogle Scholar
Shemenda, A. 1985. Modelling of the opening mechanism for certain types of back arc basins. Oceanography 25, 204–10.Google Scholar
Shemenda, A. 1993. Subduction of the lithosphere and back arc dynamics: insights from physical modelling. Journal of Geophysical Research 98, 16167–85.CrossRefGoogle Scholar
Shephard, G. E., Liu, L., Müller, R. D. & Gurnis, M. 2012. Dynamic topography and anomalously negative residual depth of the Argentine Basin. Gondwana Research 22, 658–63.CrossRefGoogle Scholar
Smith, A. 1999. Gondwana: its shape, size and position from Cambrian to Triassic times. Journal of African Earth Sciences 28, 7197.CrossRefGoogle Scholar
Smith, A. G., Briden, J. C. & Drewry, G. E. 1973. Phanerozoic world maps. In Organisms and Continents Through Time (ed. Hughes, N. F.), pp. 142. Special Papers in Palaeontology 12. London: The Palaeontological Association, 334 pp.Google Scholar
Smith, M., Kurtz, J., Richards, S., Forster, M. & Lister, G. 2007. A re-evaluation of the break-up of South America and Africa using deformable mesh reconstruction software. Journal of the Virtual Explorer 25, doi: 10.3809/jvirtex.2007.00163, 13 pp.CrossRefGoogle Scholar
Smith, A. G., Smith, D. G. & Funnell, B. M. 1994. Atlas of Mesozoic and Cenozoic Coastlines. Cambridge: Cambridge University Press, 456 pp. & 31 maps.Google Scholar
Stampfli, G. & Borel, G. 2002. A plate tectonic model for the Paleozoic and Mesozoic constrained by dynamic plate boundaries and restored synthetic oceanic isochrons. Earth and Planetary Science Letters 196, 1733.CrossRefGoogle Scholar
Stampfli, G. & Borel, G. 2004. The Transmed transects in space and time: constraints on the paleotectonic evolution of the Mediterranean Domain. In The TRANSMED Atlas: The Mediterranean Region from Crust to Mantle (eds Cavazza, W., Roure, F., Sparkman, W., Stampfli, G., Ziegler, P.), pp. 5380. Berlin: Springer.CrossRefGoogle Scholar
Stampfli, G. M., Borel, G. D., Marchant, R. & Mosar, J. 2002. Western Alps geological constraints on western Tethyan reconstructions. In Reconstruction of the Evolution of the Alpine–Himalayan Orogen (eds Rosenbaum, G. & Lister, G. S.). Journal of the Virtual Explorer 7, doi: 10.3809/jvirtex.2002.00057.Google Scholar
Stampfli, G., Hochard, C., Vérard, C., Wilhem, C. & von Raumer, J. 2013. The formation of Pangea. Tectonophysics 593, 119.CrossRefGoogle Scholar
Suess, E. 1892. Das Antlitz der Erde I–III. Prag & Wien: F. Tempsky / Leipzig: G. Freytag, 778 pp.Google Scholar
Sugihara, G., May, R., Ye, H., Hsieh, C.-H., Deyle, E., Fogarty, M. & Munch, S. 2012. Detecting causality in complex ecosystems. Science 338 (6106), 496500.CrossRefGoogle ScholarPubMed
Thomas, P. 2010. La convection, moteur du manteau. In La Terre à Cœur Ouvert. Dossier Pour la Science 67, Avril-Juin, 3845.Google Scholar
Tindall, J., Flecker, R., Valdes, P., Schmidt, D., Markwick, P. & Harris, J. 2010. Modelling the oxygen isotope distribution of ancient seawater using a coupled ocean-atmosphere GCM: implications for reconstructing early Eocene climate. Earth and Planetary Science Letters 292, 265–73.CrossRefGoogle Scholar
Torsvik, T. & Cocks, R. 2011. The Palaeozoic palaeogeography of central Gondwana. In The Formation and Evolution of Africa: A Synopsis of 3.8 Ga of Earth History (eds Hinsbergen, D. van, Buiter, S., Torsvik, T., Gaina, C. & Webb, S.), pp. 137–66. Geological Society of London, Special Publication no. 357.Google Scholar
Torsvik, T. & Cocks, R. 2013. Gondwana from top to base in space and time. Gondwana Research 24, 9991030.CrossRefGoogle Scholar
Torsvik, T. & Cocks, R. 2017. Earth History and Palaeogeography. Cambridge: Cambridge University Press, 317 pp.CrossRefGoogle Scholar
Torsvik, T., Müller, D., Van der Voo, R., Steinberger, B. & Gaina, C. 2008. Global plate motion frames: toward a unified model. Reviews of Geophysics 46, RG3004. doi: 10.1029/2007RG000227, 44 pp.CrossRefGoogle Scholar
Torsvik, T. & Smethrust, M. 1999. Plate tectonic modelling: virtual reality with GMap. Computers & Geosciences 25, 395402.CrossRefGoogle Scholar
Torsvik, T., Steinberger, B., Gurnis, M. & Gaina, C. 2010. Plate tectonics and net lithosphere rotation over the past 150 My. Earth and Planetary Science Letters 291, 106–12.CrossRefGoogle Scholar
Torsvik, T. & Van der Voo, R. 2002. Refining Gondwana and Pangea palaeogeography: estimates of Phanerozoic non-dipole (octupole) fields. Geophysical Journal International 151, 771–94.CrossRefGoogle Scholar
Torsvik, T., Van der Voo, R., Preeden, U., Mac Niocaill, C., Steinberger, B., Doubrovine, P., van Hinsbergen, D., Domeier, M., Gaina, C., Tohver, E., Meert, J., McCausland, Ph. & Cocks, R. 2012. Phanerozoic polar wander, palaeogeography and dynamics. Earth-Science Reviews 114, 325–68.CrossRefGoogle Scholar
Turcotte, D. L. & Schubert, G. 2002. Geodynamics. 2nd Edition. Cambridge: Cambridge University Press, 456 pp.CrossRefGoogle Scholar
Van der Voo, R., Scotese, C. & Bonhommet, N. (eds) 1984. Plate Reconstruction from Paleozoic Paleomagnetism. American Geophysical Union, Geodynamics Series vol. 12, Washington, DC, USA, 136 pp.CrossRefGoogle Scholar
Vérard, C. In press. Panalesis: towards global synthetic palaeogeographies using integration and coupling of manifold models. Geological Magazine.Google Scholar
Vérard, C., Flores, K., Stampfli, G. 2012 b. Geodynamic reconstructions of the South America – Antarctica plate system. Journal of Geodynamics 53, 4360.CrossRefGoogle Scholar
Vérard, C., Hochard, C., Baumgartner, P. O. & Stampfli, G. 2015 a. Geodynamic evolution of the Earth over the Phanerozoic: plate tectonic activity and palaeo-climatic indicators. Journal of Palaeogeography 4, 167–88.CrossRefGoogle Scholar
Vérard, C., Hochard, C., Baumgartner, P. O. & Stampfli, G. 2015 b. 3D palaeogeographic reconstructions of the Phanerozoic versus sea-level and Sr-ratio variations. Journal of Palaeogeography 4, 6484.CrossRefGoogle Scholar
Vérard, C., Hochard, C. & Stampfli, G. 2012 a. Non-random distribution of Euler poles: is plate tectonics subject to rotational effects? Terra Nova 24, 467–76.CrossRefGoogle Scholar
Vérard, C. & Stampfli, G. 2013 a. Geodynamic reconstructions of the Australides – 1: Palaeozoic. Geosciences 3, 311–30.CrossRefGoogle Scholar
Vérard, C. & Stampfli, G. 2013 b. Geodynamic reconstructions of the Australides – 2: Mesozoic and Cainozoic. Geosciences, 3, 331–53.CrossRefGoogle Scholar
Vine, F. & Hess, H. 1968. Sea floor spreading. Princeton University Technical Report. The Sea 4, 35 pp.Google Scholar
Vine, F. & Matthews, D. 1963. Magnetic anomalies over oceanic ridges. Nature 4897, 947–9.CrossRefGoogle Scholar
Vrielynck, B. & Bouysse, P. 2003. Le Visage Changeant de la Terre: L’éclatement de la Pangée et la Mobilité des Continents au Cours des Derniers 250 Millions d'Années. Paris: Commission de la Carte Géologique du Monde, UNESCO Edition, 32 pp.Google Scholar
Wadati, K. 1928. Shallow and deep earthquakes [1st paper]. Geophysical Magazine 1, 162202.Google Scholar
Wadati, K. 1929. Shallow and deep earthquakes [2nd paper]. Geophysical Magazine 2, 136.Google Scholar
Wadati, K. 1931. Shallow and deep earthquakes [3rd paper]. Geophysical Magazine 4, 231–83.Google Scholar
Warners-Ruckstuhl, K., Govers, R. & Wortel, R. 2012. Lithosphere-mantle coupling and the dynamics of the Eurasian plate. Geophysical Journal International 189, 1253–76.CrossRefGoogle Scholar
Warners-Ruckstuhl, K., Govers, R. & Wortel, R. 2013. Dynamics and stress field of the Eurasian plate. Poster #EGU2013-9094 at the EGU General Assembly, Vienna.Google Scholar
Wegener, A. 1912. Die Enstehung der Kontinente. Geologische Rundschau 2, 276–92.CrossRefGoogle Scholar
Wegener, A. 1915. Die Enstehung der Kontinente und Ozeane. Braunschweig: Vieweg F. & Sohn, 94 pp.Google Scholar
Wegener, A. 1929. Die Entstehung der Kontinente und Ozeane. Braunschweig: Vieweg F & Sohn, 231 pp.Google Scholar
Wessel, P. & Kroenke, L. 2009. Observations of geometry and ages constrain relative motion of Hawaii and Louisville plumes. Earth and Planetary Science Letters 284, 467–72.CrossRefGoogle Scholar
Wilhem, C., Windley, B. & Stampfli, G. 2012. The Altaids of Central Asia: a tectonic and evolutionary innovative review. Earth-Science Reviews 113, 303–41.CrossRefGoogle Scholar
Williams, S., Müller, R. D., Landgrebe, T. & Whittaker, J. 2012. An open-source software environment for visualizing and refining plate tectonic reconstructions using high-resolution geological and geophysical data sets. GSA Today 22 (4/5), 49.CrossRefGoogle Scholar
Wilson, J. T. 1965. A new class of faults and their bearing on continental drift. Nature 207 (4995), 343–7.CrossRefGoogle Scholar
Wu, B., Conrad, C., Heuret, A., Lithgow-Bertelloni, C. & Lallemand, S. 2008. Reconciling strong slab pull and weak plate bending: the plate motion constraint on the strength of mantle slabs. Earth Planetary Science Letters 272, 412–21.CrossRefGoogle Scholar
Zharkov, M. & Chumakov, N. 2001. Paleogeography and sedimentation settings during Permian–Triassic reorganizations in biosphere. Stratigraphy and Geological Correlation 9, 340–63.Google Scholar
Zharkov, M., Murdmaa, I. & Filatova, N. 1995. Paleogeography of the mid-Cretaceous period. Stratigraphy and Geological Correlation 3, 216–40.Google Scholar
Zharkov, M., Murdmaa, I. & Filatova, N. 1998 a. Paleogeography of the Berriasian–Barremian ages of the Early Cretaceous. Stratigraphy and Geological Correlation 6, 4769.Google Scholar
Zharkov, M., Murdmaa, I. & Filatova, N. 1998 b. Paleogeography of the Coniacian–Maastrichian ages of the Early Cretaceous. Stratigraphy and Geological Correlation 6, 209–21.Google Scholar
Ziegler, P. 1982. Geological Atlas of Western and Central Europe. Shell International Petroleum Mij. B.V. and Amsterdam: Elsevier Science Publishers, 130 pp.Google Scholar
Ziegler, A., Scotese, C. & Barrett, S. 1983. Mesozoic and Cenozoic paleogeographic maps. In Tidal Friction and the Earth's Rotation, II (eds Brosche, P. & Sündermann, J.), pp. 240–52. Berlin: Springer-Verlag.Google Scholar
Zonenshain, L. & Kuzmin, M. 1992. Paleogeodynamics; The Plate Tectonic Evolution of the Earth. Moscow: Nauka. English version published by American Geophysical Union, Washington, DC, USA, 1997, 218 pp.Google Scholar
Cited by