Skip to main content Accessibility help
×
Home
Hostname: page-component-568f69f84b-4g88t Total loading time: 0.247 Render date: 2021-09-22T15:22:50.170Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Panalesis: towards global synthetic palaeogeographies using integration and coupling of manifold models

Published online by Cambridge University Press:  29 January 2018

CHRISTIAN VÉRARD*
Affiliation:
Chemin de Servasse, F – 74930 Reignier-Ésery, France
*Corresponding
*Author for correspondence: xian_verard@hotmail.com

Abstract

Palaeogeographic reconstructions have been proposed for years. The technique employed, however, is more or less always the same: it consists of determining the palaeoenvironment at the local scale and extending it to the regional scale. Such work is carried out in a maximum number of locations all over the planet and the global palaeogeography is the result of interpolation of those reconstructions. Advances in palaeogeography can be made via an alternative way, which consists of integrating and then coupling various global models. It results in the proposal of synthetic palaeogeographies that can be compared a posteriori to local or regional data. The advantage is twofold: (1) the view is really global and it avoids gaps (in particular in the oceanic realm) in the reconstructions, and it is very much less focused on the coastline; (2) it takes advantages from almost all the fields of geosciences, so that reconstructions can be constrained from a large variety of data. The two techniques – the ‘classic’ and the ‘alternative’ – are not contradictory but complementary, and it is desirable that one feeds the other and the study of palaeogeography be revived.

Type
Original Articles
Copyright
Copyright © Cambridge University Press 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barnett-Moore, N., Hassan, R., Müller, R. D., Williams, S. E. & Flament, N. 2017. Dynamic topography and eustasy controlled the paleogeography evolution of northern Africa since the mid Cretaceous. Tectonics 36, 929–44.CrossRefGoogle Scholar
Brunetti, M. & Vérard, C. 2017. How to reduce long-term drift in present-day and deep-time simulations? Climate Dynamics, published online 6 September 2017. doi: 10.1007/s00382-017-3883-7.CrossRefGoogle Scholar
Brunetti, M., Vérard, C. & Baumgartner, P. O. 2015. Modelling the Middle Jurassic ocean circulation. Journal of Palaeogeography (JoP) 4, 371–83.CrossRefGoogle Scholar
Colleoni, F. 2015. GRenoble Ice-Shelf and Land-Ice Model: A Practical User Guide. Centro Euro-Mediterraneo sui Cambiamenti Climatici (CMCC) Research Papers, RP249, 59 pp.Google Scholar
Davies, R., Goes, S., Davies, J. H., Schubert, B., Bunge, H.-P. & Ritsema, J. 2012. Reconciling dynamic and seismic models of Earth's lower mantle: the dominant role of thermal heterogeneity. Earth and Planetary Science Letters 353–354, 253–69.CrossRefGoogle Scholar
Dercourt, J., Guetani, M. & Vrielynck, B. 2000. Atlas Peri-Téthys and Explainating Notes (S. Crasquin coord.). Paris: CCGM, 268 pp., 24 maps.Google Scholar
Dercourt, J., Ricou, L. & Vrielynck, B. (eds) 1993. Atlas Tethys Palaeo-Environmental Maps. Atlas and Explanatory Notes. Paris: Gauthier Villars, 307 pp., 14 maps.Google Scholar
Dewey, J. & Bird, J. 1970. Plate tectonics and geosynclines. Tectonophysics 10, 625–38.CrossRefGoogle Scholar
Flament, N. 2014. Linking plate tectonics and mantle flow to Earth's topography. Geology 42, 927–28.CrossRefGoogle Scholar
Golonka, J. 2007a. Phanerozoic paleoenvironment and paleolithofacies maps: Early Paleozoic. Geologica 35 (4), 589654.Google Scholar
Golonka, J. 2007b. Phanerozoic paleoenvironment and paleolithofacies maps: Late Paleozoic. Geologica 33 (2), 145209.Google Scholar
Golonka, J. 2007c. Phanerozoic paleoenvironment and paleolithofacies maps: Mesozoic. Geologica 32 (2), 211–64.Google Scholar
Golonka, J. 2009. Phanerozoic paleoenvironment and paleolithofacies maps: Cenozoic. Geologica 35 (4), 507–87.Google Scholar
Gurnis, M., Turner, M., Zahirovic, S., DiCaprio, L., Spasojevic, S., Müller, R. D., Boyden, J., Seton, M., Constantin Manea, V. & Bower, D. 2012. Plate tectonic reconstructions with continuously closing plates. Computers & Geosciences 38, 3542.CrossRefGoogle Scholar
Hafkenscheid, E., Wortel, R. & Spakman, W. 2006. Subduction history of the Tethyan region derived from seismic tomography and tectonic reconstructions. Journal of Geophysical Research 111, B08401, doi: 10.1029/2005JB003791, 26 pp.CrossRefGoogle Scholar
Hafkenscheid, E., Warners, K., van Oosterhout, C., Bergman, S., van der Burgt, J., Davies, J. H., Govers, R., Hochard, C., Kennan, L., Ross, M., Stampfli, G., Vérard, C., Webb, P. & Wortel, R. 2013. Integrating plate tectonic reconstruction & mantle dynamics: a valuable aid in frontier exploration. Geophysical Research Abstract, EGU General Assembly 15, EGU2013–3204.Google Scholar
Kaplan, J. O. 2001. Geophysical applications of vegetation modeling. Ph.D. thesis, Lund University, Lund, 129 pp. Published thesis.Google Scholar
Malatesta, C., Gerya, T., Crispini, L., Federico, L. & Capponi, G. 2013. Oblique subduction modelling indicates along-trench tectonic transport of sediments. Nature Communications 4, 2456, doi: 10.1038/ncomms3456, 6 pp.CrossRefGoogle ScholarPubMed
Molnar, P. & England, P. 1990. Late Cenozoic uplift of mountain ranges and global climate change: chicken or egg? Nature 346, 2934.CrossRefGoogle Scholar
Molteni, F. 2003. Atmospheric simulations using a GCM with simplified physical parametrizations. I: model climatology and variability in multidecadal experiments. Climate Dynamics 20, 175–91.CrossRefGoogle Scholar
Müller, R. D., Hassan, R., Gurnis, M., Flament, N. & Williams, S. E. 2017. Dynamic topography of passive continental margins and their hinterlands since the Cretaceous. Gondwana Research, published online 1 May 2017. doi: 10.1016/j.gr.2017.04.028.Google Scholar
Perroud, M., Brunetti, M. & Vérard, C. 2015. Sensitivity of the ocean system to the bathymetry in numerical simulations of climate. Geophysical Research Abstract, EGU General Assembly 17, EGU2015–5336.Google Scholar
Raymo, M. & Ruddiman, W. 1992. Tectonic forcing of late Cenozoic climate. Nature 359, 117–22.CrossRefGoogle Scholar
Ritz, C., Rommelaere, V. & Dumas, C. 2001. Modeling the evolution of Antarctic ice sheet over the last 420,000 years: implications for altitude changes in the Vostok region. Journal of Geophysical Research 106, 31943–64.CrossRefGoogle Scholar
Royer, D., Berner, R., Montañez, I., Tabor, N. & Beerling, D. 2004. CO2 as a primary driver of Phanerozoic climate. GSA Today 14 (3), 410.2.0.CO;2>CrossRefGoogle Scholar
Ruddiman, W. F. 2001. Earth's Climate: Past and Future. New York: W.H. Freeman & Sons, 465 pp.Google Scholar
Scotese, C. 1976. A continental drift ‘flip book’. Computers & Geosciences 2, 113–16.CrossRefGoogle Scholar
Scotese, C., Boucot, A. & McKerrow, W. 1999. Gondwanan palaeogeography and palaeo-climatology. Journal of African Earth Sciences 28, 99114.CrossRefGoogle Scholar
Stampfli, G. & Borel, G. 2002. A plate tectonic model for the Paleozoic and Mesozoic constrained by dynamic plate boundaries and restored synthetic oceanic isochrones. Earth and Planetary Science Letters 196, 1733.CrossRefGoogle Scholar
Torsvik, T. & Cocks, L. 2017. Earth History and Palaeogeography. Cambridge: Cambridge University Press, 317 pp.CrossRefGoogle Scholar
van der Burgt, J., Govers, R., Webb, P., Stampfli, G., Vérard, C., Hochard, C., Davies, J. H. & Wortel, R. 2013. The dynamics of the Eurasian plate and the interplate stress field in the Middle-Late Eocene. Geophysical Research Abstract, EGU General Assembly 15, EGU2013–7946.Google Scholar
Vérard, C. In press. Plate tectonic modelling: review & perspectives. Geological Magazine.Google Scholar
Vérard, C., Hochard, C., Baumgartner, P. & Stampfli, G. 2015a. 3D palaeogeographic reconstructions of the Phanerozoic versus sea-level and Sr-ratio variations. Journal of Palaeogeography 4, 6484.CrossRefGoogle Scholar
Vérard, C., Hochard, C., Baumgartner, P. & Stampfli, G. 2015b. Geodynamic evolution of the Earth over the Phanerozoic: plate tectonic activity and palaeo-climatic indicators. Journal of Palaeogeography 4, 167– 88.CrossRefGoogle Scholar
Warners-Ruckstuhl, K., Govers, R. & Wortel, R. 2012. Lithosphere-mantle coupling and the dynamics of the Eurasian plate. Geophysical Journal International 189, 1253–76.CrossRefGoogle Scholar
Warners-Ruckstuhl, K., Govers, R. & Wortel, R. 2013. Tethyan collision forces and the stress field of the European Plate. Geophysical Journal International 195, 115.CrossRefGoogle Scholar
Wilhem, C. 2014. Maps of the Callovian and Tithonian Paleogeography of the Caribbean, Atlantic, and Tethyan Realms: Facies and Environments. Geological Society of America Digital Map and Chart Series 17, sheet 2 (Tithonian paleogeography), doi: 10.1130/2014.DMCH017.S2.Google Scholar
Willett, S. 1999. Orogeny and orography: The effects of erosion on the structure of mountain belts. Journal of Geophysical Research 104, 28957–81.CrossRefGoogle Scholar
Willett, S., Hovius, N., Brandon, M. & Fisher, D. (eds) 2006. Tectonics, Climate, and Landscape Evolution. Geological Society of America, Special Paper no. 398.Google Scholar
Winton, M. 2000. A reformulated three-layer sea ice model. Journal of Atmospheric and Ocean Technology 17, 525–31.2.0.CO;2>CrossRefGoogle Scholar
3
Cited by

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Panalesis: towards global synthetic palaeogeographies using integration and coupling of manifold models
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Panalesis: towards global synthetic palaeogeographies using integration and coupling of manifold models
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Panalesis: towards global synthetic palaeogeographies using integration and coupling of manifold models
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *