Skip to main content Accessibility help
Hostname: page-component-568f69f84b-4g88t Total loading time: 0.257 Render date: 2021-09-22T12:43:09.022Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Palaeogeological hiatus surface mapping: a tool to visualize vertical motion of the continents

Published online by Cambridge University Press:  07 September 2018

Department of Geo and Environmental Sciences, Ludwig-Maximilians-University of Munich, Luisenstrasse 37, 80333 München, Germany


Dynamic topography is a well-established consequence of global geodynamic models of mantle convection with horizontal dimensions of >1000 km and amplitudes up to 2 km. Such physical models guide the interpretation of geological records on equal dimensions. Continent-scale geological maps therefore serve as reference frames of choice to visualize erosion/non-deposition as a proxy for long-wavelength, low-amplitude vertical surface motion. At a resolution of systems or series, such maps display conformable and unconformable time boundaries traceable over hundreds to thousands of kilometres. Unconformable contact surfaces define the shape and size of time gap (hiatus) in millions of years based on the duration of time represented by the missing systems or series. Hiatus for a single system or series base datum diminishes laterally to locations (anchor points) where it is conformable at the mapped resolution; it is highly dependent upon scale. A comparison of hiatus area between two successive system or series boundaries yields changes in location, shape, size and duration, indicative of the transient nature of vertical surface motion. As a single-step technique, it serves as a quantitative proxy for palaeotopography that can be calibrated using other geological data. The tool magnifies the need for geological mapping at the temporal resolution of stages, matching process rates. The method has no resolving power within conformable regions (basins) but connects around them. When applied to marine seismic sections that relate to rock record, not to time, biostratigraphic and radiometric data from deep wells are needed before hiatus areas – that relate to time – can be mapped.

Original Article
Copyright © Cambridge University Press 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)


Argus, D. F., Gordon, R. G. & DeMets, C. 2011. Geologically current motion of 56 plates relative to the no‐net‐rotation reference frame. Geochemistry, Geophysics, Geosystems 12 (11), Q11001, doi:10.1029/2011GC003751.CrossRefGoogle Scholar
Asch, K. 2003. The 1:5 Million International Geological Map of Europe and adjacent areas: development and implementation of a GIS-enabled concept. Geologisches Jahrbuch, Sonderheft A3, 172 pp.Google Scholar
Asch, K. 2005. IGME 5000: 1:5 Million International Geological Map of Europe and Adjacent Areas. Hannover: BGR.Google Scholar
Baran, R., Friedrich, A. M. & Schlunegger, F. 2014. The late Miocene to Holocene erosion pattern of the Alpine foreland basin reflects Eurasian slab unloading beneath the western Alps rather than global climate change. Lithosphere 6 (2), 124–31.CrossRefGoogle Scholar
Barnett-Moore, N., Hassan, R., Müller, D., Williams, S. & Flament, N. 2017. Dynamic topography and eustasy controlled the paleogeographic evolution of northern Africa since the mid-Cretaceous. Tectonics 36 (5), 929–44.CrossRefGoogle Scholar
Beloussov, V. V. 1962. Basic Problems in Geotectonics. New York: McGraw-Hill, 809 pp.Google Scholar
Blackwelder, E. 1909. The valuation of unconformities. Journal of Geology 17, 289–99.CrossRefGoogle Scholar
Bouysse, P. 2014. Geological Map of the World at 1:35 000 000, with explanatory notes, 3rd edition. Paris: Commission for the Geological Map of the World.Google Scholar
Boyden, J. A., Müller, R. D., Gurnis, M., Torsvik, T. H., Clark, J. A., Turner, M., Ivey-Law, H., Watson, R. J. & Cannon, J. S. 2011. Next-generation plate-tectonic reconstructions using GPlates. In Geoinformatics: Cyberinfrastructure for the Solid Earth Sciences (ed. Keller, G. R.), pp. 95113. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Bunge, H.-P. & Glasmacher, U. A. 2018. Models and observations of vertical motion (MoveOn) associated with rifting to passive margins: Preface. Gondwana Research 53, 18.CrossRefGoogle Scholar
Bunge, H.-P., Hagelberg, C. R. & Travis, B. J. 2003. Mantle circulation models with variational data assimilation: inferring past mantle flow and structure from plate motion histories and seismic tomography. Geophysical Journal International 152 (2), 280301.CrossRefGoogle Scholar
Bunge, H.-P., Richards, M. A., Lithgow-Bertelloni, C., Baumgardner, J. R., Grand, S. P. & Romanowicz, B. 1998. Time scales and heterogeneous structure in geodynamic Earth models. Science 280, 91–6.CrossRefGoogle ScholarPubMed
Burgess, P. M. & Gurnis, M. 1995. Mechanisms for the formation of cratonic stratigraphic sequences. Earth and Planetary Science Letters 136 (3–4), 647–63.CrossRefGoogle Scholar
Burke, K. & Gunnel, Y. 2008. The African Erosion Surface: A continental scale synthesis of geomorphology, tectonics and environmental change of the past 180 million years. Geological Society of America Memoir 201, 166.Google Scholar
Christie-Blick, N., Mountain, G. S. & Miller, K. G. 1990. Seismic stratigraphic record of sea-level change. In Sea-level Change (ed. National Research Council), pp. 116–40. Washington, DC: National Academy Press.Google Scholar
Church, J. A., White, N. J., Coleman, R., Lambeck, K. & Mitrovica, J. X. 2004. Estimates of the regional distribution of sea level rise over the 1950–2000 period. Journal of Climate 17 (13), 2609–25.2.0.CO;2>CrossRefGoogle Scholar
Colli, L., Ghelichkhan, S. & Bunge, H. P. 2016. On the ratio of dynamic topography and gravity anomalies in a dynamic Earth. Geophysical Research Letters 43 (6), 2510–6.CrossRefGoogle Scholar
Colli, L., Stotz, I., Bunge, H. P., Smethurst, M., Clark, S., Iaffaldano, G., Tassara, A., Guillocheau, F. & Bianchi, M. C. 2014. Rapid South Atlantic spreading changes and coeval vertical motion in surrounding continents: Evidence for temporal changes of pressure‐driven upper mantle flow. Tectonics 33 (7), 1304–21.CrossRefGoogle Scholar
Condie, K. C. 2001. Mantle Plumes and Their Record in Earth History. Cambridge: Cambridge University Press, 306 pp.CrossRefGoogle Scholar
Cox, K. G. 1989. The role of mantle plumes in the development of continental drainage patterns. Nature 342 (6252), 873 pp.CrossRefGoogle Scholar
Davies, G. F. 1999. Dynamic Earth: Plates, Plumes and Mantle Convection. Cambridge: Cambridge University Press, 460 pp.CrossRefGoogle Scholar
DiCaprio, L., Gurnis, M., Müller, R. D. & Tan, E. 2011. Mantle dynamics of continentwide Cenozoic subsidence and tilting of Australia. Lithosphere 3 (5), 311–6.CrossRefGoogle Scholar
Doornenbal, H. & Stevenson, A. 2010. Petroleum Geological Atlas of the Southern Permian Basin area. Houten, Netherlands: EAGE, 342 pp.Google Scholar
England, P. & Molnar, P. 1990. Surface uplift, uplift of rocks, and exhumation of rocks. Geology 18 (12), 1173–7.2.3.CO;2>CrossRefGoogle Scholar
Ernst, R. E. & Buchan, K. L. (eds) 2001. Mantle Plumes: Their Identification Through Time. Geological Society of America, Special Paper no. 352, 593 pp.Google Scholar
Evans, D. (ed.) 2003. The Millennium Atlas: Petroleum Geology of the Central and Northern North Sea. London: Geological Society of London, 389 pp.Google Scholar
Friedrich, A. M., Bunge, H. P., Rieger, S. M., Colli, L., Ghelichkhan, S. & Nerlich, R. 2018. Stratigraphic framework for the plume mode of mantle convection and the analysis of interregional unconformities on geological maps. Gondwana Research 53, 159–88.CrossRefGoogle Scholar
Friedrich, A. M., Wernicke, B. P., Niemi, N. A., Bennett, R. A. & Davis, J. L. 2003. Comparison of geodetic and geologic data from the Wasatch region, Utah, and implications for the spectral character of Earth deformation at periods of 10 to 10 million years. Journal of Geophysical Research-Solid Earth 108 (B4), published online 15 April 2003, doi: 10.1029/2001JB000682.CrossRefGoogle Scholar
Geel, T. 2000. Recognition of stratigraphic sequences in carbonate platform and slope deposits: empirical models based on microfacies analysis of Palaeogene deposits in southeastern Spain. Palaeogeography, Palaeoclimatology, Palaeoecology 155 (3–4), 211–38.CrossRefGoogle Scholar
Gradstein, F. M., Ogg, J. G., Schmitz, M. & Ogg, G. (eds). 2012. The Geologic Time Scale 2012. Volumes 1 and 2. Amsterdam: Elsevier, 1144 pp.Google Scholar
Green, P., Japsen, P., Chalmers, J. A., Bonow, J. M. & Duddy, I. R. 2018. Post-breakup burial and exhumation of passive continental margins: nine propositions to inform geodynamic models. Gondwana Research 53, 5881.CrossRefGoogle Scholar
Green, P. F., Lidmar-Bergström, K., Japsen, P., Bonow, J. M. & Chalmers, J. A. 2013. Stratigraphic landscape analysis, thermochronology and the episodic development of elevated, passive continental margins. Geological Survey of Denmark & Greenland Bulletin 30, 150 pp.Google Scholar
Guillocheau, F., Simon, B., Baby, G., Bessin, P., Robin, C. & Dauteuil, O. 2018. Planation surfaces as a record of mantle dynamics: the case example of Africa. Gondwana Research 53, 8298.CrossRefGoogle Scholar
Gurnis, M. 1990. Bounds on global dynamic topography from Phanerozoic flooding of continental platforms. Nature 344 (6268), 754.CrossRefGoogle Scholar
Hager, B. H., Clayton, R. W., Richards, M. A., Comer, R. P. & Dziewonski, A. M. 1985. Lower mantle heterogeneity, dynamic topography and the geoid. Nature 313 (6003), 541.CrossRefGoogle Scholar
Haq, B. U., Hardenbol, J. A. N. & Vail, P. R. 1987. Chronology of fluctuating sea levels since the Triassic. Science 235 (4793), 1156–67.CrossRefGoogle ScholarPubMed
Heine, C., Müller, R. D., Steinberger, B. & Torsvik, T. H. 2008. Subsidence in intracontinental basins due to dynamic topography. Physics of the Earth and Planetary Interiors 171, 252–64.CrossRefGoogle Scholar
Hopper, J. R., Funck, T., Stoker, M., Arting, U., Peron-Pinvidic, G., Doornenbal, H. & Gaina, C. 2014. Tectonostratigraphic Atlas of the North-East Atlantic Region. Geological Survey of Denmark and Greenland, 337 pp.Google Scholar
Ismail-Zadeh, A., Schubert, G., Tsepelev, I. & Korotkii, A. 2004. Inverse problem of thermal convection: numerical approach and application to mantle plume restoration. Physics of the Earth Planetary Interiors 145 (1–4), 99114.CrossRefGoogle Scholar
Japsen, P., Chalmers, J. A., Green, P. F. & Bonow, J. M. 2012. Elevated, passive continental margins: Not rift shoulders, but expressions of episodic, post-rift burial and exhumation. Global and Planetary Change 90, 7386.CrossRefGoogle Scholar
Kemnitz, H., Ehling, B.-C., Elicki, O., Franzke, H.-J., Geyer, G., Linnemann, U., Leonhardt, D., Plessen, B., Rötzler, J., Rohrmüller, J., Romer, R. L., Tichomirova, M. & Zedler, H. 2017. The Stratigraphic Table of Germany 2016: Proterozoic to Silur. In STD 2016 Stratigraphic chart of Germany — Part I (ed. M. Menning), pp. 423–46. Zeitschrift der Deutschen Gesellschaft für Geowissenschaften no. 168(4).Google Scholar
Kreemer, C., Holt, W. E. & Haines, A. J. 2003. An integrated global model of present‐day plate motions and plate boundary deformation. Geophysical Journal International 154 (1), 834.CrossRefGoogle Scholar
Kukla, P. A., Strozyk, F. & Mohriak, W. U. 2018. South Atlantic salt basins–witnesses of complex passive margin evolution. Gondwana Research 53, 4157.CrossRefGoogle Scholar
Levorsen, A. I. 1933. Studies in paleogeology. Bulletin of the American Association of Petroleum Geologists 17, 1107–32.Google Scholar
Matthews, K. J., Maloney, K. T., Zahirovic, S., Williams, S. E., Seton, M. & Müller, R. D. 2016. Global plate boundary evolution and kinematics since the late Paleozoic. Global and Planetary Change 146, 226–50.CrossRefGoogle Scholar
Mazur, S., Scheck-Wenderoth, M. & Krzywiec, P. 2005. Different modes of the Late Cretaceous–Early Tertiary inversion in the North German and Polish basins. International Journal of Earth Sciences 94 (5–6), 782–98.CrossRefGoogle Scholar
Menning, M. & Hendrich, A. 2002. Stratigraphic Table of Germany 2002. Potsdam: German Stratigraphic Commission.Google Scholar
Miall, A. D. 1991. Stratigraphic sequences and their chronostratigraphic correlation. Journal of Sedimentary Research 61 (4), 497505.Google Scholar
Miall, A. 2010. The Geology of Stratigraphic Sequences, 2nd edition. Berlin, Heidelberg: Springer, 522 pp.CrossRefGoogle Scholar
Miall, A. D. 2016. The valuation of unconformities. Earth-Science Reviews 163, 2271.CrossRefGoogle Scholar
Neofitu, R. & Friedrich, A. M. 2018. Analysis of hiatal surfaces and the stratigraphic framework for the plume mode in the East African Rift System (EARS): progress and limitations. Geophysical Research Abstracts 20, EGU2018-14976-1.Google Scholar
Pitman, W. C. III & Golovchenko, X. 1991. Modelling sedimentary sequences. In Controversies in Modern Geology (Proceedings of the Hsü Symposium) (eds Müller, D. W., McKenzie, J. A. & Weissert, H.), pp. 279309. London: Academic Press.Google Scholar
Prenzel, J., Lisker, F., Monsees, N., Balestrieri, M. L., Läufer, A. & Spiegel, C. 2018. Development and inversion of the Mesozoic Victoria Basin in the Terra Nova Bay (Transantarctic Mountains) derived from thermochronological data. Gondwana Research 53, 110–28.CrossRefGoogle Scholar
Prothero, D. R. & Schwab, F. 2014. Sedimentary Geology: An Introduction to Sedimentary Rocks and Stratigraphy Learning. New York: W. H. Freeman, 500 pp.Google Scholar
Rainbird, R. H. & Ernst, R. E. 2001. The sedimentary record of mantle-plume uplift. In Mantle Plumes: Their Identification through Time (eds Ernst, R. E. & Buchan, K. L.), pp. 227–45. Geological Society of America, Special Paper no. 352.CrossRefGoogle Scholar
Scotese, C. R. & Golonka, J. 1997. Paleogeographic Atlas. PALEOMAP Project, University of Texas at Arlington, pp. 145.Google Scholar
Sehrt, M., Glasmacher, U. A., Stockli, D. F., Labour, H. & Kluth, O. 2018. The southern Moroccan passive continental margin: An example of differentiated long-term landscape evolution in Gondwana. Gondwana Research 53, 129–44.CrossRefGoogle Scholar
Şengör, A. C. 2001a. Is the Present the Key to the Past or is the Past the Key to the Present? James Hutton and Adam Smith versus Abraham Gottlob Werner and Karl Marx in Interpreting History. Geological Society of America, Special Paper no. 355, 51 pp.Google Scholar
Şengör, A. M. C. 2001b. Elevation as indicator of mantle-plume activity. In Mantle Plumes: Their Identification Through Time (eds Ernst, R. E. & Buchan, K. L.), pp. 183225. Geological Society of America, Special Paper no. 352.CrossRefGoogle Scholar
Şengör, A. M. C. 2003. The Large-Wavelength Deformations of the Lithosphere. Materials for a History of the Evolution of Thought from the Earliest Times to Plate Tectonics. Geological Society of America, Memoir no. 196, 347 pp.Google Scholar
Şengör, A. M. C. 2016. What is the use of the history of geology to a practicing geologist? The propaedeutical case of stratigraphy. Journal of Geology 124, 643– 98.CrossRefGoogle Scholar
Sloss, L. L. 1963. Sequences in the cratonic interior of North America. Geological Society of America Bulletin 74, 93113.CrossRefGoogle Scholar
Sloss, L. L. 1992. Tectonic episodes of cratons: conflicting North America concepts. Terra Nova 4, 320–8.CrossRefGoogle Scholar
Sloss, L. L., Krumbein, W. C. & Dapples, E. C. 1949. Integrated facies analysis. In Sedimentary Facies in Geologic History (eds Longwell, C. R., Moore, R. C., McKee, E. D., Müller, S. W., Spieker, E. M., Wood, H. E. II, Sloss, L. L., Krumbein, W. C. & Dapples, E. C.), pp. 91124. Geological Society of America, Memoir no. 39.CrossRefGoogle Scholar
Steinberger, B. & O'Connell, R. J. 1997. Changes of the Earth's rotation axis owing to advection of mantle density heterogeneities. Nature 387 (6629), 169–73.CrossRefGoogle Scholar
Stille, H. 1919. Die Begriffe Orogenese und Epirogenese. Zeitschrift der Deutschen Geologischen Gesellschaft 71, 164208.Google Scholar
Stille, H. 1924. Grundfragen der Vergleichenden Tektonik. Berlin: Gebrüder Bornträger, 443 pp.Google Scholar
Suess, E. 1883. Das Antlitz der Erde. Volume Ia. Prag–Wien: F. Tempsky and Leipzig: G. Freytag, 310 pp.Google Scholar
Summerhayes, C. P. 1986. Sealevel curves based on seismic stratigraphy: their chronostratigraphic significance. Palaeogeography, Palaeoclimatology, Palaeoecology 57 (1), 2741.CrossRefGoogle Scholar
Torsvik, T. H. & Cocks, L. R. M. 2017. Earth History and Palaeogeography. Cambridge: Cambridge University Press, 317 pp.CrossRefGoogle Scholar
Vail, P. R., Hardenbol, J. & Todd, R. G. 1984. Jurassic unconformities, chronostratigraphy, and sea-level changes from seismic stratigraphy and biostratigraphy. In Interregional Unconformities and Hydrocarbon Accumulation (ed. Schlee, J. S.), pp. 129–44. American Association of Petroleum Geologists, Memoir no. 36.Google Scholar
Vail, P. R., Mitchum, R. M. Jr. & Thompson, S. 1977. Seismic stratigraphy and global changes of sea level. Part 4. Global cycles of relative changes of sea level. Section 2. Application of seismic reflection configuration to stratigraphic interpretation. In Seismic Stratigraphy: Applications to Hydrocarbon Exploration (ed. Payton, C. E.), pp. 8397. American Association of Petroleum Geologists, Memoir no. 26.Google Scholar
Vibe, Y., Friedrich, A. M., Bunge, H.-P. & Clark, S. 2018. Correlations of oceanic spreading rates and hiatus surface area in the north Atlantic realm. Lithosphere. published online 31 August 2018. Scholar
von Eynatten, H., Voigt, T., Meier, A., Franzke, H. J. & Gaupp, R. 2008. Provenance of Cretaceous clastics in the Subhercynian Basin: constraints to exhumation of the Harz Mountains and timing of inversion tectonics in Central Europe. International Journal of Earth Sciences 97 (6), 1315–30.CrossRefGoogle Scholar
Wheeler, H. E. 1958. Time-stratigraphy. Bulletin of the American Association of Petroleum Geologists 41, 1045–63.Google Scholar
Wheeler, H. E. 1964. Base level, lithosphere surface, and time-stratigraphy. Geological Society of America Bulletin 75 (7), 599610.CrossRefGoogle Scholar
Yildirim, E. & Friedrich, A. M. 2018. Reconstructing basin evolution through unconformities: hiatus mapping across the Northern Alpine foreland basin. AAPG Abstracts with Programs, Salt Lake City, May 2018.Google Scholar
Ziegler, P. A. 1990. Geological Atlas of Western and Central Europe. The Hague: Shell International Petroleum Maatschappij BV.Google Scholar
Supplementary material: PDF

Friedrich supplementary material

Figure S1A,B

Download Friedrich supplementary material(PDF)
Supplementary material: PDF

Friedrich supplementary material

Figure S1C

Download Friedrich supplementary material(PDF)
Supplementary material: PDF

Friedrich supplementary material

Figure S2

Download Friedrich supplementary material(PDF)
Supplementary material: PDF

Friedrich supplementary material

Figure S3

Download Friedrich supplementary material(PDF)
PDF 987 KB
Supplementary material: PDF

Friedrich supplementary material

Friedrich supplementary material 1

Download Friedrich supplementary material(PDF)
PDF 656 KB
Cited by

Send article to Kindle

To send this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Palaeogeological hiatus surface mapping: a tool to visualize vertical motion of the continents
Available formats

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Palaeogeological hiatus surface mapping: a tool to visualize vertical motion of the continents
Available formats

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Palaeogeological hiatus surface mapping: a tool to visualize vertical motion of the continents
Available formats

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *