Hostname: page-component-77c89778f8-gq7q9 Total loading time: 0 Render date: 2024-07-20T22:15:31.835Z Has data issue: false hasContentIssue false

Geochronology of early Mesozoic diabase units in southwestern China: metallogenic and tectonic implications

Published online by Cambridge University Press:  11 July 2018

State Key Laboratory of Geological Processes and Mineral Resources, School of Earth Sciences and Resources, China University of Geosciences, Beijing 100083, China Department of Geoscience, University of Nevada, Las Vegas, Las Vegas, Nevada 89154, USA
State Key Laboratory of Geological Processes and Mineral Resources, School of Earth Sciences and Resources, China University of Geosciences, Beijing 100083, China
State Key Laboratory of Geological Processes and Mineral Resources, School of Earth Sciences and Resources, China University of Geosciences, Beijing 100083, China
Department of Geoscience, University of Nevada, Las Vegas, Las Vegas, Nevada 89154, USA
State Key Laboratory of Geological Processes and Mineral Resources, School of Earth Sciences and Resources, China University of Geosciences, Beijing 100083, China
State Key Laboratory of Geological Processes and Mineral Resources, School of Earth Sciences and Resources, China University of Geosciences, Beijing 100083, China
State Key Laboratory of Geological Processes and Mineral Resources, School of Earth Sciences and Resources, China University of Geosciences, Beijing 100083, China
State Key Laboratory of Geological Processes and Mineral Resources, School of Earth Sciences and Resources, China University of Geosciences, Beijing 100083, China
School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China
Author for correspondence: (D. Yan); (L. Qiu)
Author for correspondence: (D. Yan); (L. Qiu)


Two phases of diabase-sill-forming magmatism are recorded within the Badu anticline where magmas were emplaced into upper Palaeozoic carbonates and clastic rocks of the Youjiang fold-and-thrust belt in the SW South China Block, China. Zircons from these diabase units yield weighted mean U–Pb ages of 249.2±2.0 Ma and 187.1±3.3 Ma, and magmatic oxygen fugacity values from ‒20 to ‒6 (average of ‒12, equating to FMQ +5) and ‒20 to ‒10 (average of ‒15, equating to FMQ +2), respectively. These data indicate that the sills were emplaced during Early Triassic and Early Jurassic times. The discovery of c. 250 Ma mafic magmatism in this area was probably related to post-flood-basalt extension associated with the Emeishan mantle plume or rollback of the subducting Palaeo-Tethys slab. The c. 190 Ma diabase sills indicate that the southwestern South China Block records Early Jurassic mafic magmatism and lithospheric extension that was likely associated with a transition from post-collisional to within-plate tectonic regimes. The emplacement of diabase intrusions at depth may have driven hydrothermal systems, enabling the mobilization of elements from sedimentary rocks and causing the formation of a giant epigenetic metallogenic domain. The results indicate that high-oxygen-fugacity materials within basement rocks caused crustal contamination of the magmas, contributing to the wide range of oxygen fugacity conditions recorded by the Au-bearing Badu diabase. In addition, data from inherited xenocrystic zircons within the Badu diabase and detrital zircons from basement rocks suggest that the Neoproterozoic Jiangshao suture extends to the south of the Badu anticline.

Original Article
Copyright © Cambridge University Press 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)


Ali, J. R., Thompson, G. M., Zhou, M. F. & Song, X. 2005. Emeishan large igneous province, SW China. Lithos 79, 475–89.CrossRefGoogle Scholar
Andersen, T. 2002. Correction of common lead in U–Pb analyses that do not report 204Pb. Chemical Geology 192, 5979.CrossRefGoogle Scholar
Ballard, J. R., Palin, J. M. & Campbell, I. H. 2002. Relative oxidation states of magmas inferred from Ce(IV)/Ce(III) in zircon: application to porphyry copper deposits of northern Chile. Contributions to Mineralogy and Petrology 144, 347–64.CrossRefGoogle Scholar
BGMRGX (Bureau of Geology and Mineral Resources of Guangxi Province). 1985. Regional Geology of Guangxi Autonomous Region. Beijing: Geological Publishing House, pp. 1853 (in Chinese).Google Scholar
BGMRGX (Bureau of Geology and Mineral Resources of Guangxi Province). 1992. Geological Map and Report of Baduwei Area (G-48-140-B), Scale 1:50,000, pp. 1–200 (in Chinese).Google Scholar
Blanchard, S., Rossignol, C., Bourquin, S., Dabard, M., Hallot, E., Nalpas, T., Poujol, M., Battail, B., Jalil, N. E., Steyer, J. S., Vacant, R., Veran, M., Bercovici, A., Dize, J. B., Paquette, J. L., Khenthavong, B. & Vongphamany, S. 2013. Late Triassic volcanic activity in South-East Asia: new stratigraphical, geochronological and paleontological evidence from the Luang Prabang Basin (Laos). Journal of Asian Earth Sciences 70–71, 826.CrossRefGoogle Scholar
Blundy, J. & Wood, B. 1994. Prediction of crystal-melt partition coefficients from elastic moduli. Nature 372 (6505), 452.CrossRefGoogle Scholar
Bonin, B. 2004. Do coeval mafic and felsic magmas in post-collisional to within-plate regimes necessarily imply two contrasting, mantle and crustal, sources? A review. Lithos 78, 124.CrossRefGoogle Scholar
Boynton, W. V. 1984. Cosmochemistry of the rare earth elements: meteorite studies. In Rare Earth Element Geochemistry (ed. Henderson, P.), pp. 63114. Amsterdam: Elsevier.CrossRefGoogle Scholar
Brown, M. 2010. Melting of the continental crust during orogenesis: the thermal, rheological, and compositional consequences of melt transport from lower to upper continental crust. Canadian Journal of Earth Sciences 47, 655–94.CrossRefGoogle Scholar
Cai, K., Sun, M., Yuan, C., Zhao, G., Xiao, W., Long, X. & Wu, F. 2010. Geochronological and geochemical study of mafic dykes from the northwest Chinese Altai: implications for petrogenesis and tectonic evolution. Gondwana Research 18, 638–52.CrossRefGoogle Scholar
Candela, P. A. & Holland, H. D. 1986. A mass-transfer model for copper and molybdenum in magmatic hydrothermal systems-the origin of porphyry-type ore-deposits. Economic Geology 81, 119.CrossRefGoogle Scholar
Cao, W., Yan, D. P., Qiu, L., Zhang, Y. & Qiu, J. 2015. Structural style and metamorphic conditions of the Jinshajiang metamorphic belt: nature of the Paleo-Jinshajiang orogenic belt in the eastern Tibetan Plateau. Journal of Asian Earth Sciences 113, 748–65.CrossRefGoogle Scholar
Carmichael, I. S. E. 1991. The redox states of basic and silicic magmas: a reflection of their source regions? Contributions to Mineralogy and Petrology 106, 129–41.CrossRefGoogle Scholar
Christie, D. M., Carmichael, I. S. E. & Langmuir, C. H. 1986. Oxidation states of mid-ocean ridge basalt glasses. Earth and Planetary Science Letters 79, 397411.CrossRefGoogle Scholar
Deng, J. & Wang, Q. 2015. Gold mineralization in China: metallogenic provinces, deposit types and tectonic framework. Gondwana Research 36, 219–74.CrossRefGoogle Scholar
Deprat, J. 1914. Etude des plissements et des zones décrasement de lamoyenne et de la basse RivièreNoire. Mémoire du Service Géologique Indochine 3, 159.Google Scholar
Dewey, J. F. 1988. Extensional collapse of orogens. Tectonics 7, 1123–39.CrossRefGoogle Scholar
Dong, W. D., Su, W. C., Shen, N. P., Zhu, L. Y. & Cai, J. L. 2013. Minerology and geochemistry of the Au-bearing sufide from the Badu Carlin-type Au deposit in Guangxi. Acta Mineralogica Sinica S2, 431–2.Google Scholar
Dong, S. W., Zhang, Y. Q., Zhang, F. Q., Cui, J. J., Chen, X. H., Zhang, S. H., Miao, L. C., Li, J. H., Shi, W., Li, Z. H., Huang, S. Q. & Li, H. L. 2015. Late Jurassic–Early Cretaceous continental convergence and intracontinental orogenesis in East Asia: a synthesis of the Yanshan Revolution. Journal of Asian Earth Sciences 114, 750–70.CrossRefGoogle Scholar
Ernst, R. E., Grosfils, E. B. & Mege, D. 2001. Giant dyke swarms: Earth, Venus, and Mars. Annual Review of Earth and Planetary Sciences 29, 489534.CrossRefGoogle Scholar
Fan, W. M., Zhang, C. H., Wang, Y. J., Guo, F. & Peng, T. P. 2008. Geochronology and geochemistry of Permian basalts in western Guangxi Province, Southwest China: evidence for plume–lithosphere interaction. Lithos 102, 218–36.CrossRefGoogle Scholar
Faure, M., Lepvrier, C., Nguyen, V. V., Vu, T. V., Lin, W. & Chen, Z. 2014. The South China Block–Indochina collision: where, when, and how? Journal of Asian Earth Sciences 79, 260–74.CrossRefGoogle Scholar
Faure, M., Lin, W., Chu, Y. & Lepvrier, C. 2016a. Triassic tectonics of the southern margin of the South China Block. Comptes Rendus Geoscience 348, 514.CrossRefGoogle Scholar
Faure, M., Lin, W., Chu, Y. & Lepvrier, C. 2016b. Triassic tectonics of the Ailaoshan Belt (SW China): early Triassic collision between the South China and Indochina blocks, and Middle Triassic intracontinental shearing. Tectonophysics 683, 2742.CrossRefGoogle Scholar
Feng, C. Y., Zeng, Z. L., Zhang, D. Q., Qu, W. J., Du, A. D., Li, D. X. & She, H. Q. 2011. SHRIMP zircon U–Pb and molybdenite Re–Os isotopic dating of the tungsten deposits in the Tianmenshan–Hongtaoling W–Sn orefield, southern Jiangxi Province, China, and geological implications. Ore Geology Reviews 43, 825.CrossRefGoogle Scholar
Ferry, J. M. & Watson, E. B. 2007. New thermodynamic models and revised calibrations for the Ti-in-zircon and Zr-in-rutile thermometers. Contributions to Mineralogy and Petrology 154, 429–37.CrossRefGoogle Scholar
Fromaget, J. 1932. Sur la structure des Indosinides. Comptes Rendus de l'Académie des Sciences 195, 538.Google Scholar
Fromaget, J. 1941. L'Indochine française, sa structure geologique, ses roches, sesmines et leurs relations possibles avec la tectonique. Bulletin du Service Geologique de l'Indochine 26, 1140.Google Scholar
Galfetti, T., Bucher, H., Martini, R., Hochuli, P. A., Weissert, H., Crasquin-Soleau, S., Brayard, A., Goudemand, N., Bruehwiler, T. & Guodun, K. 2008. Evolution of Early Triassic outer platform paleoenvironments in the Nanpanjiang Basin (South China) and their significance for the biotic recovery. Sedimentary Geology 204, 3660.CrossRefGoogle Scholar
Gehrels, G., Kapp, P., Decelles, P., Pullen, A., Blakey, R., Weislogel, A., Ding, L., Guynn, J., Martin, A., Mcquarrie, N. & Yin, A. 2011. Detrital zircon geochronology of pre-Tertiary strata in the Tibetan–Himalayan orogen. Tectonics 30, TC5016, doi: 10.1029/2011TC002868.CrossRefGoogle Scholar
Goldfarb, R. J., Taylor, R. D., Collins, G. S., Goryachev, N. A. & Orlandini, O. F. 2014. Phanerozoic continental growth and gold metallogeny of Asia. Gondwana Research 25, 48102.CrossRefGoogle Scholar
Gorring, M. L. & Kay, S. M. 2001. Mantle sources and processes of Neogene slab window magmas from southern Patagonia, Argentina. Journal of Petrology 42, 1067–94.CrossRefGoogle Scholar
Gorring, M., Singer, B., Gowers, J. & Kay, S. M. 2003. Plio-Pleistocene basalts from the Meseta del Lago Buenos Aires, Argentina: evidence for asthenosphere–lithosphere interactions during slab window magmatism. Chemical Geology 193, 215–35.CrossRefGoogle Scholar
Guo, L. & Gao, R. 2018. Potential-field evidence for the tectonic boundaries of the central and western Jiangnan belt in South China. Precambrian Research 309, 4555.CrossRefGoogle Scholar
Halls, H. C., Li, J., Davis, D., Hou, G., Zhang, B. & Qian, X. 2000. A precisely dated Proterozoic palaeomagnetic pole form the NCC, and its relevance to palaeocontinental reconstruction. Geophysical Journal International 143, 185203.CrossRefGoogle Scholar
Halpin, J. A., Tran, H. T., Lai, C. K., Meffre, S., Crawford, A. J. & Zaw, K. 2016. U–Pb zircon geochronology and geochemistry from NE Vietnam: a ‘tectonically disputed’ territory between the Indochina and South China blocks. Gondwana Research 34, 254–73.CrossRefGoogle Scholar
Hedenquist, J. W. & Lowenstern, J. B. 1994. The role of magmas in the formation of hydrothermal ore deposits. Nature 370, 519–27.CrossRefGoogle Scholar
Hiess, J., Nutman, A. P., Bennett, V. C. & Holden, P. 2008. Ti-in-zircon thermometry applied to contrasting Archean metamorphic and igneous systems. Chemical Geology 247, 323–38.CrossRefGoogle Scholar
Hoskin, P. W. & Ireland, T. R. 2000. Rare earth element chemistry of zircon and its use as a provenance indicator. Geology 28, 627–30.2.0.CO;2>CrossRefGoogle Scholar
Hou, G., Li, J., Yang, M., Yao, W., Wang, C. & Wang, Y. 2008. Geochemical constraints on the tectonic environment of the Late Paleoproterozoic mafic dyke swarms in the North China Craton. Gondwana Research 13, 103–16.CrossRefGoogle Scholar
Hu, R. Z., Chen, W. T., Xu, D. R. & Zhou, M. F. 2017a. Reviews and new metallogenic models of mineral deposits in South China: an introduction. Journal of Asian Earth Sciences 137, 18.CrossRefGoogle Scholar
Hu, L., Du, Y., Cawood, P. A., Xu, Y., Yu, W., Zhu, Y. & Yang, J. 2014. Drivers for late Paleozoic to early Mesozoic orogenesis in South China: constraints from the sedimentary record. Tectonophysics 618, 107–20.CrossRefGoogle Scholar
Hu, R. Z., Fu, S., Huang, Y., Zhou, M. F., Fu, S., Zhao, C., Wang, Y., Bi, X. & Xiao, J. 2017b. The giant South China Mesozoic low-temperature metallogenic domain: reviews and a new geodynamic model. Journal of Asian Earth Sciences 137, 934.CrossRefGoogle Scholar
Hu, R. Z., Su, W. C., Bi, X. W., Tu, G. Z. & Hofstra, A. H. 2002. Geology and geochemistry of Carlin-type gold deposits in China. Mineralium Deposita 37, 378–92.Google Scholar
Hu, R. Z. & Zhou, M. F. 2012. Multiple Mesozoic mineralization events in South China—an introduction to the thematic issue. Mineralium Deposita 47, 579–88.CrossRefGoogle Scholar
Jackson, M. G., Weis, D. & Huang, S. 2012. Major element variations in Hawaiian shield lavas: source features and perspectives from global ocean island basalt (OIB) systematics. Geochemistry, Geophysics, Geosystems 13 (9), 132–47.CrossRefGoogle Scholar
Kerrich, R., Goldfarb, R. J. & Richards, J. P. 2005. Metallogenic provinces in an evolving geodynamic framework. Economic Geology 100, 1097–136.Google Scholar
Kröner, A., Wilde, S. A., Zhao, G. C., O'Brien, P. J., Sun, M., Liu, D. Y., Wan, Y. S., Liu, S. W. & Guo, J. H. 2006. Zircon geochronology and metamorphic evolution of mafic dykes in the Hengshan Complex of northern China: evidence for late Palaeoproterozoic extension and subsequent high-pressure metamorphism in the North China Craton. Precambrian Research 146, 4567.CrossRefGoogle Scholar
Kusky, T., Li, J. H. & Santosh, M. 2007. The Paleoproterozoic North Hebei Orogen: North China Craton's collisional suture with Columbia Supercontinent. Gondwana Research 12, 428.CrossRefGoogle Scholar
Lee, C. T. A., Leeman, W. P., Canil, D. & Li, Z. X. A. 2005. Similar V/Sc systematics in MORB and arc basalts: implications for the oxygen fugacities of their mantle source regions. Journal of Petrology 46, 2313–36.Google Scholar
Lehrmann, D. J., Enos, P., Payne, J. L., Montgomery, P., Wei, J., Yu, Y., Xiao, J. & Orchard, M. J. 2005. Permian and Triassic depositional history of the Yangtze platform and Great Bank of Guizhou in the Nanpanjiang basin of Guizhou and Guangxi, South China. Albertiana 33, 149–68.Google Scholar
Lehrmann, D. J., Pei, D., Enos, P., Minzoni, M., Ellwood, B. B., Orchard, M. J., Zhang, J., Wei, J., Dillett, P., Koenig, J., Steffen, K., Druke, D., Druke, J., Kessel, B. & Newkirk, T. 2007. Impact of differential tectonic subsidence on isolated carbonate-platform evolution: Triassic of the Nanpanjiang Basin, South China. American Association of Petroleum Geologists Bulletin 91, 287320.CrossRefGoogle Scholar
Lepvrier, C., Faure, M., Van, V. N., Vu, T. V., Lin, W., Trong, T. T. & Hoa, P. T. 2011. North-directed Triassic nappes in northeastern Vietnam (East Bac Bo). Journal of Asian Earth Sciences 41, 5668.CrossRefGoogle Scholar
Lepvrier, C., Maluski, H., Tich, V. V., Leyreloup, A., Thi, P. T. & Vuong, N. V. 2004. The Early Triassic Indosinian orogeny in Vietnam (Truong Son Belt and Kontum Massif): implications for the geodynamic evolution of Indochina. Tectonophysics 393, 87118.CrossRefGoogle Scholar
Li, P., Pang, B., Wang, B., Li, Y., Zhou, Y., Lv, J. & Ma, J. 2015. Fluid inclusions and rare earth elements of the Badu gold deposit, Guangxi, China: implications for mineralization. Acta Geologica Sinica 88, 1118–19 (in Chinese with English abstract).CrossRefGoogle Scholar
Li, J., Zhang, Y., Dong, S. & Johnston, S. T. 2014. Cretaceous tectonic evolution of South China: a preliminary synthesis. Earth-Science Reviews 134, 98–36.CrossRefGoogle Scholar
Li, H., Zhang, Z., Ernst, R., Lu, L., Santosh, M., Zhang, D. & Cheng, Z. 2015. Giant radiating mafic dyke swarm of the Emeishan Large Igneous Province: identifying the mantle plume centre. Terra Nova 27, 247–57.CrossRefGoogle Scholar
Li, C. Y., Zhang, H., Wang, F. Y., Liu, J. Q., Sun, Y. L., Hao, X. L., Li, Y. L. & Sun, W. 2012. The formation of the Dabaoshan porphyry molybdenum deposit induced by slab rollback. Lithos 150, 101–10.CrossRefGoogle Scholar
Li, S., Zhao, G., Wilde, S. A., Zhang, J., Sun, M., Zhang, G. & Dai, L. 2010. Deformation history of the Hengshan–Wutai–Fuping Complexes: implications for the evolution of the Trans-North China Orogen. Gondwana Research 18, 611–31.CrossRefGoogle Scholar
Liang, H. Y., Campbell, I. H., Allen, C., Sun, W. D., Liu, C. Q., Yu, H. X., Xie, Y. W. & Zhang, Y. Q. 2006. Zircon Ce4+/Ce3+ ratios and ages for Yulong ore-bearing porphyries in eastern Tibet. Mineralium Deposita 41, 152–9.CrossRefGoogle Scholar
Lin, W., Wang, Q. & Chen, K. 2008. Phanerozoic tectonics of South China Block: new insights from the polyphase deformation in the Yunkai massif. Tectonics 27, TC6004, doi: 10.1029/2007TC002207.CrossRefGoogle Scholar
Liu, Y., Hu, Z., Gao, S., Gunther, D., Xu, J., Gao, C. & Chen, H. 2008. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard. Chemical Geology 257, 3443.CrossRefGoogle Scholar
Liu, S. A., Li, S. G., He, Y. S. & Huang, F. 2010. Geochemical contrasts between early Cretaceous ore-bearing and ore-barren high-Mg adakites in central-eastern China: implications for petrogenesis and Cu–Au mineralization. Geochimica et Cosmochimica Acta 74, 7160–78.CrossRefGoogle Scholar
Liu, Y., Santosh, M., Yuan, T., Li, H. & Li, T. 2016. Reduction of buried oxidized oceanic crust during subduction. Gondwana Research 32, 1123.CrossRefGoogle Scholar
Liu, S., Su, W., Hu, R., Feng, C., Gao, S., Coulson, I. M., Wang, T., Feng, G. Y., Tao, Y. & Xia, Y. 2010. Geochronological and geochemical constraints on the petrogenesis of alkaline ultramafic dykes from southwest Guizhou Province, SW China. Lithos 114, 253–64.CrossRefGoogle Scholar
Ludwig, K. R. 2003. User's Manual for Isoplot 3.00: A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center Berkeley, Special Publication no. 4.Google Scholar
Luo, H. J., Wu, P. F., Li, S. J., Liao, X. Y. & Li, R. 2014. Prospecting potential for the Pingle Au deposit in Tianlin, Guangxi. Acta Geologica Sichuan 34, 343–9 (in Chinese with English abstract).Google Scholar
Lynton, S. J., Candela, P. A. & Piccoli, P. M. 1993. An experimental-study of the partitioning of copper between pyrrhotite and high-silica rhyolitic melt. Economic Geology 88, 901–15.CrossRefGoogle Scholar
Mengason, M. J., Candela, P. A. & Piccoli, P. M. 2011. Molybdenum, tungsten and manganese partitioning in the system pyrrhotite-Fe-S-O melt-rhyolite melt: impact of sulfide segregation on arc magma evolution. Geochimica et Cosmochimica Acta 75, 7018–30.CrossRefGoogle Scholar
Metcalfe, I. 2011. Tectonic framework and Phanerozoic evolution of Sundaland. Gondwana Research 19, 321.CrossRefGoogle Scholar
Metcalfe, I. 2013. Gondwana dispersion and Asian accretion: tectonic and palaeogeographic evolution of eastern Tethys. Journal of Asian Earth Sciences 66, 133.CrossRefGoogle Scholar
Mungall, J. E. 2002. Roasting the mantle: slab melting and the genesis of major Au and Au-rich Cu deposits. Geology 30, 915–8.2.0.CO;2>CrossRefGoogle Scholar
Murphy, M. A., Saylor, J. E. & Ding, L. 2009. Late Miocene topographic inversion in southwest Tibet based on integrated paleoelevation reconstructions and structural history. Earth and Planetary Science Letters 282, 19.CrossRefGoogle Scholar
Myers, J. T. & Eugster, H. P. 1983. The system Fe-Si-O: oxygen buffer calibrations to 1,500 K. Contributions to Mineralogy and Petrology 82, 7590.CrossRefGoogle Scholar
Park, J. K., Buchan, K. L. & Harlan, S. S. 1995. A proposed giant radiating dyke swarm fragmented by the separation of Laurentia and Australia based on paleomagnetism of ca. 780 Ma mafic intrusions in western North America. Earth and Planetary Science Letters 132, 129–39.CrossRefGoogle Scholar
Peng, P., Zhai, M. G., Guo, J. H., Kusky, T. & Zhao, T. P. 2007. Nature of mantle source contributions and crystal differentiation in the petrogenesis of the 1.78 Ga mafic dykes in the central North China Craton. Gondwana Research 12, 2946.CrossRefGoogle Scholar
Pi, Q. H., Hu, R. Z., Peng, K. Q., Wu, J. B., Wei, C. W. & Huang, Y. 2016. Geochronology of the Zhesang gold deposit and mafic rock in Funing County of Yunnan Province, with special reference to the dynamic background of Carlin-type gold deposits in the Dian-Qian-Gui region. Acta Petrologica Sinica 32 (11), 3331–42 (in Chinese with English abstract).Google Scholar
Pi, Q. H., Hu, R., Xiong, B., Li, Q. & Zhong, R. 2017. In situ SIMS U–Pb dating of hydrothermal rutile: reliable age for the Zhesang Carlin-type gold deposit in the golden triangle region, SW China. Mineralium Deposita 52 (8), 1179–90.CrossRefGoogle Scholar
Qiao, L., Wang, Q. & Li, C. 2015. The western segment of the suture between the Yangtze and Cathaysia blocks: constraints from inherited and co–magmatic zircons from Permian S–type granitoids in Guangxi, South China. Terra Nova 27, 392–8.CrossRefGoogle Scholar
Qiu, J. T., Li, P. J., Santosh, M. & Yu, X. Q. 2014a. Magma oxygen fugacities of granitoids in the Xiaoqinling area, central China: implications for regional tectonic setting. Neues Jahrbuch für Mineralogie – Abhandlungen: Journal of Mineralogy and Geochemistry 191, 317–29.CrossRefGoogle Scholar
Qiu, J. T. & Qiu, L. 2016. Geochronology and magma oxygen fugacity of Ehu S-type granitic pluton in Zhe-Gan-Wan region, SE China. Chemie der Erde-Geochemistry 76, 441–8.CrossRefGoogle Scholar
Qiu, J. T., Song, W. J., Jiang, C. X., WU, H. & Dong, R. M. 2013a. CGDK: an extensible CorelDRAW VBA program for geological drafting. Computers and Geosciences 51, 3448.CrossRefGoogle Scholar
Qiu, L., Yan, D. P., Ren, M., Cao, W., Tang, S. L., Guo, Q. Y., Fan, L. T., Qiu, J., Zhang, Y. & Wang, Y. W. 2018. The source of uranium within hydrothermal uranium deposits of the Motianling mining district, Guangxi, South China. Ore Geology Reviews 96, 201–17.CrossRefGoogle Scholar
Qiu, L., Yan, D. P., Tang, S. L., Arndt, N. T., Fan, L. T., Guo, Q. Y. & Cui, J. Y. 2015a. Cooling and exhumation of the oldest Sanqiliu uranium ore system in Motianling district, South China Block. Terra Nova 27, 449–57.CrossRefGoogle Scholar
Qiu, L., Yan, D. P., Tang, S. L., Wang, Q., Yang, W. X., Wang, J. B. & Tang, X. L. 2016. Mesozoic geology of Southwestern China: Indosinian foreland overthrusting and subsequent deformation. Journal of Asian Earth Sciences 122, 91105.CrossRefGoogle Scholar
Qiu, L., Yan, D. P., Yang, W. X., Wang, J., Tang, X. & Ariser, S. 2017. Early to Middle Triassic sedimentary records in the Youjiang Basin, South China: implications for Indosinian orogenesis. Journal of Asian Earth Sciences 141, 125–39.CrossRefGoogle Scholar
Qiu, L., Yan, D. P., Zhou, M. F., Arndt, N. T., Tang, S. L. & Qi, L. 2014. Geochronology and geochemistry of the Late Triassic Longtan pluton in South China: termination of the crustal melting and Indosinian orogenesis. International Journal of Earth Sciences 103, 649–66.CrossRefGoogle Scholar
Qiu, L., Yan, D. P., Zhou, M. F., Gao, J. F., Tang, S. L. & Barnes, M. 2015b. Geochemistry and U–Pb zircon age of Late Triassic volcanogenic sediments in the central Yangtze Block: origin and tectonic implications. Neues Jahrbuch für Mineralogie – Abhandlungen: Journal of Mineralogy and Geochemistry 192, 211–27.CrossRefGoogle Scholar
Qiu, J. T., Yu, X. Q., Santosh, M., Li, P. J., Zhang, D. H., Xiong, G. Q. & Zhang, B. Y. 2014b. The Late Mesozoic tectonic evolution and magmatic history of west Zhejiang, SE China: implications for regional metallogeny. International Journal of Earth Sciences 103, 713–35.CrossRefGoogle Scholar
Qiu, J. T., Yu, X. Q., Santosh, M., Zhang, D. H., Chen, S. Q. & Li, P. J. 2013b. Geochronology and magmatic oxygen fugacity of the Tongcun molybdenum deposit, northwest Zhejiang, SE China. Mineralium Deposita 48, 545–56.CrossRefGoogle Scholar
Richards, J. P. 2011. Magmatic to hydrothermal metal fluxes in convergent and collided margins. Ore Geology Reviews 40, 126.CrossRefGoogle Scholar
Rock, N. M. S. 1991. Lamprophyres. New York: Springer.Google Scholar
Rowins, S. M. 2000. Reduced porphyry copper-gold deposits: a new variation on an old theme. Geology 28, 491–4.2.0.CO;2>CrossRefGoogle Scholar
Shellnutt, J. G. 2014. The Emeishan large igneous province: a synthesis. Geoscience Frontiers 5, 369–94.CrossRefGoogle Scholar
Shellnutt, J. G., Zhou, M. F., Yan, D. P. & Wang, Y. 2008. Longevity of the Permian Emeishan mantle plume (SW China): 1 Ma, 8 Ma or 18 Ma? Geological Magazine 145, 373–88.CrossRefGoogle Scholar
Smirnov, A. V. & Evans, D. A. 2015. Geomagnetic paleointensity at ~2.41 Ga as recorded by the Widgiemooltha Dyke Swarm, Western Australia. Earth and Planetary Science Letters 416, 3545.CrossRefGoogle Scholar
Su, W., Heinrich, C. A., Pettke, T., Zhang, X., Hu, R. & Xia, B. 2009. Sediment-hosted gold deposits in Guizhou, China: products of wall-rock sulfidation by deep crustal fluids. Economic Geology 104 (1), 7393.CrossRefGoogle Scholar
Sun, M., Yin, A., Yan, D., Ren, H., Mu, H., Zhu, L. & Qiu, L. 2018. Role of pre-existing structures in controlling the Cenozoic tectonic evolution of the eastern Tibetan plateau: new insights from analogue experiments. Earth and Planetary Science Letters 491, 207–15.CrossRefGoogle Scholar
Tang, S. L., Yan, D. P., Qiu, L., Gao, J. F. & Wang, C. L. 2014. Partitioning of the Cretaceous Pan-Yangtze Basin in the central South China Block by exhumation of the Xuefeng Mountains during a transition from extensional to compressional tectonics? Gondwana Research 25, 1644–59.10.1016/ Scholar
Trail, D., Watson, E. B. & Tailby, N. D. 2011. The oxidation state of Hadean magmas and implications for early Earth's atmosphere. Nature 480, 79.10.1038/nature10655CrossRefGoogle ScholarPubMed
Trail, D., Watson, E. B. & Tailby, N. D. 2012. Ce and Eu anomalies in zircon as proxies for the oxidation state of magmas. Geochimica et Cosmochimica Acta 97, 7087.10.1016/j.gca.2012.08.032CrossRefGoogle Scholar
Wang, W., Cawood, P. A., Zhou, M. F. & Zhao, J. H. 2016. Paleoproterozoic magmatic and metamorphic events link Yangtze to northwest Laurentia in the Nuna supercontinent. Earth and Planetary Science Letters 433, 269–79.10.1016/j.epsl.2015.11.005CrossRefGoogle Scholar
Wang, Y. J., Fan, W., Cawood, P. A., Ji, S., Peng, T. & Chen, X. 2007a. Indosinian high–strain deformation for the Yunkaidashan tectonic belt, South China: kinematics and 40Ar/39Ar geochronological constraints. Tectonics 26 (6), 229–47.10.1029/2007TC002099CrossRefGoogle Scholar
Wang, Y. J., Fan, W. M., Sun, M., Sun, M., Liang, X. Q., Zhang, Y. H. & Peng, P. T. 2007b. Geochronological, geochemical and geothermal constraints on petrogenesis of the Indosinian peraluminous granites in the South China Block: a case study in the Hunan Province. Lithos 96, 475502.10.1016/j.lithos.2006.11.010CrossRefGoogle Scholar
Wang, Y. J., Fan, W., Zhang, G. & Zhang, Y. 2013. Phanerozoic tectonics of the South China Block: key observations and controversies. Gondwana Research 23, 1273–305.10.1016/ Scholar
Wang, F. Y., Ge, C., Ning, S. Y., Nie, L. Q., Zhong, G. X., Zhou, T. F. & White, N. C. 2017. A new approach to LA-ICP-MS mapping and application in geology. Acta Petrologica Sinica 33, 3422–36 (in Chinese with English abstract).Google Scholar
Wang, L. J., Griffin, W. L., Yu, J. H. & O'Reilly, S. Y. 2010. Precambrian crustal evolution of the Yangtze Block tracked by detrital zircons from Neoproterozoic sedimentary rocks. Precambrian Research 177, 131–44.10.1016/j.precamres.2009.11.008CrossRefGoogle Scholar
Wang, F. Y., Liu, S. A., Li, S. G. & He, Y. S. 2013. Contrasting zircon Hf–O isotopes and trace elements between ore-bearing and ore-barren adakitic rocks in central-eastern China: implications for genetic relation to Cu–Au mineralization. Lithos 156–159, 97111.10.1016/j.lithos.2012.10.017CrossRefGoogle Scholar
Wang, Q., Wyman, D. A., Li, Z. X., Sun, W., Chung, S. L., Vasconcelos, P. M., Zhang, Q., Dong, H., Yu, Y., Pearsong, N., Qiu, H., Zhu, T. & Feng, X. 2010. Eocene north–south trending dykes in central Tibet: new constraints on the timing of east–west extension with implications for early plateau uplift? Earth and Planetary Science Letters 298, 205–16.10.1016/j.epsl.2010.07.046CrossRefGoogle Scholar
Wang, W. & Zhou, M. F. 2014. Provenance and tectonic setting of the Paleo- to Mesoproterozoic Dongchuan Group in the southwestern Yangtze Block, South China: implication for the breakup of the supercontinent Columbia. Tectonophysics 610, 110–27.10.1016/j.tecto.2013.11.009CrossRefGoogle Scholar
Watson, E. B., Wark, D. A. & Thomas, J. B. 2006. Crystallization thermometers for zircon and rutile. Contributions to Mineralogy and Petrology 151, 413–33.10.1007/s00410-006-0068-5CrossRefGoogle Scholar
Wells, M. L., Hoisch, T. D., Cruz–Uribe, A. M. & Vervoort, J. D. 2012. Geodynamics of synconvergent extension and tectonic mode switching: constraints from the Sevier–Laramide orogen. Tectonics, 31, TC1002, doi: 10.1029/2011TC002913.Google Scholar
Wiedenbeck, M., Alle, P., Corfu, F., Griffin, W. L., Meier, M., Oberli, F., Vonquadt, A., Roddick, J. C. & Speigel, W. 1995. Three natural zircon standards for U–Th–Pb, Lu–Hf, trace element and REE analyses. Geostandards Newsletter 19, 123.10.1111/j.1751-908X.1995.tb00147.xCrossRefGoogle Scholar
Williams, H., Turner, S., Kelley, S. & Harris, N. 2001. Age and composition of dykes in Southern Tibet: new constraints on the timing of east–west extension and its relationship to postcollisional volcanism. Geology 29, 339–42.10.1130/0091-7613(2001)029<0339:AACODI>2.0.CO;22.0.CO;2>CrossRefGoogle Scholar
Yakymchuk, C., Kirkland, C. L. & Clark, C. 2018. Th/U ratios in metamorphic zircon. Journal of Metamorphic Geology, published online 5 March 2018. doi: 10.1111/jmg.12307.CrossRefGoogle Scholar
Yan, D. P., Xu, Y. B., Dong, Z. B., Qiu, L., Zhang, S. & Wells, M. 2016. Fault-related fold styles and progressions in fold-thrust belts: insights from sandbox modeling. Journal of Geophysical Research: Solid Earth 121, 2087–111.Google Scholar
Yan, D. P., Zhou, Y., Qiu, L., Wells, M. L., Mu, H. & Xu, C. G. 2018. The Longmenshan tectonic complex and adjacent tectonic units in the eastern margin of the Tibetan Plateau: a review. Journal of Asian Earth Sciences 164, 3357.10.1016/j.jseaes.2018.06.017CrossRefGoogle Scholar
Yan, D. P., Zhou, M. F., Song, H. L., Wang, X. W. & Malpas, J. 2003. Origin and tectonic significance of a Mesozoic multi-layer over-thrust system within the Yangtze Block (South China). Tectonophysics 361, 239–54.10.1016/S0040-1951(02)00646-7CrossRefGoogle Scholar
Yan, D. P., Zhou, M. F., Wang, Y. & Xia, B. 2006. Structural and geochronological constraints on the tectonic evolution of the Dulong-Song Chay tectonic dome in Yunnan province, SW China. Journal of Asian Earth Sciences 28, 332–53.10.1016/j.jseaes.2005.10.011CrossRefGoogle Scholar
Yang, J. H., Cawood, P. A., Du, Y., Huang, H. & Hu, L. 2012. Detrital record of Indosinian mountain building in SW China: provenance of the Middle Triassic turbidites in the Youjiang Basin. Tectonophysics 574–575, 105–17.10.1016/j.tecto.2012.08.027CrossRefGoogle Scholar
Yang, J. H., Sun, J. F., Chen, F., Wilde, S. A. & Wu, F. Y. 2007. Sources and petrogenesis of Late Triassic dolerite dykes in the Liaodong Peninsula: implications for post-collisional lithosphere thinning of the eastern North China Craton. Journal of Petrology 48, 1973–97.10.1093/petrology/egm046CrossRefGoogle Scholar
Yang, W. X., Yan, D. P., Qiu, L., Chen, F., Mu, H. X. & Wang, X. W. 2018. The Mesozoic–Cenozoic deformation sequences of Badu complex anticline and its significance for the evolution of Nanpanjiang Basin. Earth Science Frontiers 25 (1), 3346 (in Chinese with English abstract).Google Scholar
Yao, J. X., Ji, Z. S., Wang, Y. B., Liu, D. Y., Wu, G. C., Wu, Z. J., Zhang, J. W. & Wang, L. T. 2010. Conodont and ammonite biostratigraphy and age of the Lower–Middle Triassic boundary in southern part of Guizhou Province, China. Journal of Earth Science 21, 176–8.10.1007/s12583-010-0204-zCrossRefGoogle Scholar
Yin, A. & Harrison, T. M. 2000. Geologic evolution of the Himalayan–Tibetan orogen. Annual Review of Earth and Planetary Sciences 28, 211–80.10.1146/ Scholar
Zhang, J. W., Dai, C. G., Huang, Z. L., Luo, T. Y., Qian, Z. K. & Zhang, Y. 2015. Age and petrogenesis of Anisian magnesian alkali basalts and their genetic association with the Kafang stratiform Cu deposit in the Gejiu supergiant tin-polymetallic district, SW China. Ore Geology Reviews 69, 403–16.10.1016/j.oregeorev.2015.03.011CrossRefGoogle Scholar
Zhang, Z., Mao, J., Saunders, A. D., Ai, Y., Li, Y. & Zhao, L. 2009. Petrogenetic modeling of three mafic–ultramafic layered intrusions in the Emeishan large igneous province, SW China, based on isotopic and bulk chemical constraints. Lithos 113, 369–92.10.1016/j.lithos.2009.04.023CrossRefGoogle Scholar
Zhang, Z., Mao, J., Wang, F. & Pirajno, F. 2015. Native gold and native copper grains enclosed by olivine phenocrysts in a picrite lava of the Emeishan large igneous province, SW China. American Mineralogist 91, 1178–83.10.2138/am.2006.1888CrossRefGoogle Scholar
Zhang, C. Q., Wang, D. H., Wang, Y. L., Wang, C. H. & Qiu, X. P. 2012. Discuss on the metallogenic model for Gaolong gold deposit in Tianlin County, Guangxi, China. Acta Petrologica Sinica 28, 213–24 (in Chinese with English abstract).Google Scholar
Zhang, S. H., Zhao, Y., Yang, Z. Y., He, Z. F. & Wu, H. 2009. The 1.35 Ga diabase sills from the northern North China Craton: implications for breakup of the Columbia (Nuna) supercontinent. Earth and Planetary Science Letters 288, 588600.10.1016/j.epsl.2009.10.023CrossRefGoogle Scholar
Zhao, W. W., Zhou, M. F., Li, Y. H. M., Zhao, Z. & Gao, J. F. 2017. Genetic types, mineralization styles, and geodynamic settings of Mesozoic tungsten deposits in South China. Journal of Asian Earth Sciences 137, 109–40.10.1016/j.jseaes.2016.12.047CrossRefGoogle Scholar
Zhao, J. H., Zhou, M. F., Yan, D. P., Zheng, J. P. & Li, J. W. 2011. Reappraisal of the ages of Neoproterozoic strata in South China: no connection with the Grenvillian orogeny. Geology 39, 299302.10.1130/G31701.1CrossRefGoogle Scholar
Zhou, M. F., Yan, D. P., Kennedy, A. K., Li, Y. & Ding, J. 2002. SHRIMP U–Pb zircon geochronological and geochemical evidence for Neoproterozoic, arc-magmatism along the western margin of the Yangtze block, South China. Earth and Planetary Science Letters 196, 5167.10.1016/S0012-821X(01)00595-7CrossRefGoogle Scholar
Zhou, M. F., Zhao, J. H. & Qi, L. 2006. Zircon U–Pb geochronology and elemental and Sr–Nd isotopic geochemistry of Permian mafic rocks in the Funing area, SW China. Contributions to Mineralogy and Petrology 151, 119.10.1007/s00410-005-0030-yCrossRefGoogle Scholar
Zhu, J. J., Hu, R. Z., Richards, J. P., Bi, X. W., Stern, R. & Lu, G. 2017. No genetic link between Late Cretaceous felsic dykes and Carlin-type Au deposits in the Youjiang basin, Southwest China. Ore Geology Reviews 84, 328–37.10.1016/j.oregeorev.2017.01.014CrossRefGoogle Scholar
Supplementary material: PDF

Qiu et al. supplementary material

Qiu et al. supplementary material 1

Download Qiu et al. supplementary material(PDF)
PDF 354 KB
Supplementary material: File

Qiu et al. supplementary material

Table S1

Download Qiu et al. supplementary material(File)
File 100.6 KB
Supplementary material: File

Qiu et al. supplementary material

Table S2

Download Qiu et al. supplementary material(File)
File 46.3 KB
Supplementary material: File

Qiu et al. supplementary material

Table S3

Download Qiu et al. supplementary material(File)
File 15.5 KB