Hostname: page-component-546b4f848f-lx7sf Total loading time: 0 Render date: 2023-06-01T03:41:16.731Z Has data issue: false Feature Flags: { "useRatesEcommerce": true } hasContentIssue false

Geochronological and geochemical studies of the OIB-type Baiyanghe dolerites: implications for the existence of a mantle plume in northern West Junggar (NW China)

Published online by Cambridge University Press:  25 March 2018

School of Earth Sciences and Gansu Key Laboratory of Mineral Resources in Western China, Lanzhou University, Lanzhou 730000, PR China
School of Earth Sciences and Gansu Key Laboratory of Mineral Resources in Western China, Lanzhou University, Lanzhou 730000, PR China
Key Laboratory of High-Temperature and High-Pressure Study of the Earth's Interior, Institute of Geochemistry, Chinese Academy of Sciences, 550002, PR China
School of Earth Sciences and Gansu Key Laboratory of Mineral Resources in Western China, Lanzhou University, Lanzhou 730000, PR China
School of Earth Sciences and Gansu Key Laboratory of Mineral Resources in Western China, Lanzhou University, Lanzhou 730000, PR China
School of Earth Sciences and Gansu Key Laboratory of Mineral Resources in Western China, Lanzhou University, Lanzhou 730000, PR China
School of Earth Sciences and Gansu Key Laboratory of Mineral Resources in Western China, Lanzhou University, Lanzhou 730000, PR China
School of Earth Sciences and Gansu Key Laboratory of Mineral Resources in Western China, Lanzhou University, Lanzhou 730000, PR China
School of Earth Sciences and Gansu Key Laboratory of Mineral Resources in Western China, Lanzhou University, Lanzhou 730000, PR China
College of Geology & Environment, Xi'an University of Science and Technology, Xi'an 710000, PR China
Author for correspondence:


In this paper, zircon U–Pb geochronology, major and trace elements, and Sr–Nd isotope geochemistry of the Baiyanghe dolerites in northern West Junggar of NW China are presented. The U–Pb dating of zircons from the dolerites yielded ages of 272.2±4 Ma and 276.7±6.2 Ma, which indicate the emplacement times. The dolerites are characterized by minor variations in SiO2 (46.89 to 49.07 wt%), high contents of Al2O3 (13.60 to 13.92 wt%) and total Fe2O3 (11.14 to 11.70 wt%), and low contents of MgO (2.67 to 3.64 wt%) and total alkalis (Na2O+K2O, 5.1 to 5.97 wt%, K2O/Na2O = 0.37–0.94), which indicate affinities to metaluminous tholeiite basalt. The REE pattern ((La/Sm)N = 2.25–2.34, (La/Yb)N = 7.42–8.36), V–Ti/1000 and 50*Zr–Ti/50–Sm discrimination diagrams show that these rocks are OIB-type. The high contents of Zr and Ti indicate a within-plate tectonic setting, and samples plot in the ‘plume source’ field shown on the Dy/Yb(N) versus Ce/Yb(N) diagram. The positive εNd(t) values (+7.09 to +7.48), high initial 87Sr/86Sr ratios (0.70442 to 0.70682) and depletions of Nb and Ta elements in the samples can be explained by the involvement of subducted sediments. In summary, it is possible that the Baiyanghe dolerites were derived from an OIB-like mantle source and associated with a mantle plume tectonic setting. Therefore, our samples provide the youngest evidence for the existence of a mantle plume, which may provide new insights into the Late Palaeozoic tectonic setting of West Junggar.

Original Article
Copyright © Cambridge University Press 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)


Abrajevitch, A., Van der Voo, R., Bazhenov, M. L., Levashova, N. M. & McCausland, P. J. A. 2008. The role of the Kazakhstan orocline in the late Paleozoic amalgamation of Eurasia. Tectonophysics 455, 6176.CrossRefGoogle Scholar
Bacon, C. R., Bruggman, P. E., Cheitiansen, R. L., Clynne, M. A., Donnelly-Nolan, J. M. & Hildreth, W. 1997. Primitive magmas at five Cascade volcanic fields: melts from hot, heterogeneous sub-arc mantle. Canadian Mineralogist 35, 397423.Google Scholar
Badarch, G., Cunningham, W. D. & Windley, B. F. 2002. A new terrane subdivision for Mongolia: implications for the Phanerozoic crustal growth of Central Asia. Journal of Asian Earth Sciences 21, 87110.CrossRefGoogle Scholar
BGMRXUAR (Bureau of Geology and Mineral Resources of Xinjiang Uygur Autonomous Region). 1993. Regional Geology of Xinjiang Uygur Autonomous Region. Beijing: Geological Publishing House, 841 pp. (in Chinese with English abstract).Google Scholar
Biske, Y. S. & Seltmann, R. 2010. Paleozoic Tian-Shan as a transitional region between the Rheic and Urals-Turkestan Oceans. Gondwana Research 17, 602–13.CrossRefGoogle Scholar
Black, L. P., Kamo, S. L., Allen, C. M., Aleinikoff, J. N., Davis, D. W., Korsch, R. J. & Foudoulis, C. 2003. TEMORA 1: a new zircon standard for Phanerozoic U–Pb geochronology. Chemical Geology 200, 155–70.CrossRefGoogle Scholar
Buckman, S. & Aitchison, J. C. 2004. Tectonic evolution of Paleozoic terranes in West Junggar, Xinjiang, NW China. In Aspects of the Tectonic Evolution of China (eds Malpas, J., Fletcher, C. J. N. & Aitchison, J. C.), pp. 101–29. Geological Society of London, Special Publication no. 226.Google Scholar
Buslov, M. M., Fujiwara, Y., Iwata, K. & Semakov, N. N. 2004. Late Paleozoic–Early Mesozoic geodynamics of Central Asia. Gondwana Research 7, 791808.CrossRefGoogle Scholar
Buslov, M. M., Safonova, I. Y., Watanabe, T., Obut, O. T., Fujiwara, Y., Iwata, K., Semakov, N. N., Sugai, Y., Smirnova, L. V., Kazansky, A. Y. & Itaya, T. 2001. Evolution of the Paleo-Asian Ocean (Altai-Sayan Region, Central Asia) and collision of possible Gondwana-derived terranes with the southern marginal part of the Siberian continent. Geosciences Journal 5, 203–24.CrossRefGoogle Scholar
Chauvel, C., Hofmann, A. W. & Vidal, P. 1992. HIMU EM – The French June 2012324 Polynesian Connection. Earth and Planetary Science Letters 110, 99119.CrossRefGoogle Scholar
Chauvel, C., Lewin, E., Carpentier, M., Arndt, N. T. & Marini, J.-C. 2008. Role of recycled oceanic basalt and sediment in generating the Hf–Nd mantle array. Nature Geosciences 1, 64–7.CrossRefGoogle Scholar
Chen, B. & Arakawa, Y. 2005. Elemental and Nd–Sr isotopic geochemistry of granitoids from the West Junggar foldbelt (NW China), with implications for Phanerozoic continental growth. Geochimica et Cosmochimica Acta 69, 1307–20.CrossRefGoogle Scholar
Chen, S. & Guo, Z. J. 2010. Time constraints, tectonic setting of Dalabute ophiolitic complex and its significance for Late Paleozoic tectonic evolution in West Junggar. Acta Petrologica Sinica 26, 2336–44 (in Chinese with English abstract).Google Scholar
Chen, S., Guo, Z. J., Pe-Piper, G. & Zhu, B. B. 2013. Late Paleozoic peperites in West Junggar, China, and how they constrain regional tectonic and palaeo-environmental setting. Gondwana Research 23, 666–81.CrossRefGoogle Scholar
Chen, J. F., Han, B. F., Ji, J. Q., Zhang, L., Xu, Z., He, G. Q. & Wang, T. 2010. Zircon U–Pb ages and tectonic implications of Paleozoic plutons in northern West Junggar, North Xinjiang, China. Lithos 115, 137–52.CrossRefGoogle Scholar
Chen, J. F., Han, B. F. & Zhang, L. 2010. Geochemistry, Sr–Nd isotopes and tectonic implications of two generations of Late Paleozoic plutons in northern West Junggar, Northwest China. Acta Petrologica Sinica 26, 2317–35 (Chinese with English abstract).Google Scholar
Chen, B. & Jahn, B. M. 2004. Genesis of post-collisional granitoids and basement nature of the Junggar Terrane, NW China: Nd–Sr isotope and trace element evidence. Journal of Asian Earth Sciences 23, 691703.CrossRefGoogle Scholar
Choulet, F., Chen, Y., Wang, B., Faure, M., Cluzel, D., Charvet, J., Lin, W. & Xu, B. 2011. Late Paleozoic paleogeographic reconstruction of Western Central Asia based upon paleomagnetic data and its geodynamic implications. Journal of Asian Earth Sciences 42, 867–84.CrossRefGoogle Scholar
Cliff, R. A., Baker, P. E. & Mateer, N. J. 1991 Geochemistry of inaccessible island volcanics. Chemical Geology 92, 251–60.CrossRefGoogle Scholar
Clift, P. D. & Vannucchi, P. 2004. Controls on tectonic accretion versus erosion in subduction zones: implications for the origin and recycling of the continental crust. Reviews of Geophysics 42, 117–28.CrossRefGoogle Scholar
Coleman, R. G. 1989. Continental growth of Northwest China. Tectonics 8, 621–35.CrossRefGoogle Scholar
Condie, K. C. 1998. Episodic continental growth and supercontinents: a mantle avalanche connection? Earth and Planetary Science Letters 163, 97108.CrossRefGoogle Scholar
Degtyarev, K. E. 1999. Tectonic Evolution of the Early Paleozoic Active Margin in Kazakhstan. Moscow: Nauka, 123 pp. (in Russian).Google Scholar
Degtyarev, K. E. 2011. Tectonic evolution of early Paleozoic island arc systems and continental crust formation in the Caledonides of Kazakhstan and the North Tien Shan. Geotectonics 45, 2350.CrossRefGoogle Scholar
Deng, J., Wang, Q. F., Yang, S. J., Liu, X. F., Zhang, Q. Z., Yang, L. Q. & Yang, Y. H. 2010. Genetic relationship between the Emeishan plume and the bauxite deposits in Western Guangxi, China: constraints from U–Pb and Lu–Hf isotopes of the detrital zircons in bauxite ores. Journal of Asian Earth Sciences 37, 412–24.CrossRefGoogle Scholar
DePaolo, D. J., Bryce, J. G., Dodson, A., Shuster, D. L. & Kennedy, B. M. 2001. Isotopic evolution of Mauna Loa and the chemical structure of the Hawaiian plume. Geochemistry, Geophysics, Geosystems 2, 223–35.CrossRefGoogle Scholar
Didenko, A. N. & Morozov, O. L. 1999. Geology and paleomagnetism of Middle–Upper Paleozoic rocks of the Saur Ridge. Geotectonics 4, 6480 (in Russian with English abstract).Google Scholar
Dobretsov, N. L., Buslov, M. M. & Vernikovsky, V. A. 2003. Neoproterozoic to Early Ordovician evolution of the Paleo-Asian Ocean: implications to the break-up of Rodinia. Gondwana Research 6, 143–59.CrossRefGoogle Scholar
Eby, G. N. 1992. Chemical subdivision of the A-type granitoids: petrogenetic and tectonic implications. Geology 20, 641.2.3.CO;2>CrossRefGoogle Scholar
Ewart, A., Collerson, K. D. & Regelous, M. 1998. Geochemical evolution within the Tonga-Kermadec-Lau arc-back-arc systems: the role of varying mantle wedge composition in space and time. Journal of Petrology 39, 331–68.CrossRefGoogle Scholar
Feng, Y. M., Coleman, R. G., Tilton, G. R. & Xiao, X. C. 1989. Tectonic evolution of the West Junggar region, Xinjiang, China. Tectonics 8, 729–52.CrossRefGoogle Scholar
Feng, Q. W., Li, J. Y., Liu, J. F., Zhang, J. & Qu, J. F. 2012. Ages of the Hongshan granite and intruding dioritic dyke swarms, in western Junggar, Xinjiang, NW China: evidence from LA-ICP-MS zircon chronology. Acta Petrologica Sinica 28, 2935–49 (in Chinese with English abstract).Google Scholar
Filippova, I. B., Bush, V. A. & Didenko, A. N. 2001. Middle Paleozoic subduction belts: the leading factor in the formation of the Central Asian fold-and-thrust belt. Russian Journal of Earth Sciences 3, 405–26.CrossRefGoogle Scholar
Gao, R., Xiao, L., Pirajno, F., Wang, G. C., He, X. X., Yang, G. & Yan, S. W. 2014. Carboniferous–Permian extensive magmatism in the West Junggar, Xinjiang, northwestern China: its geochemistry, geochronology, and petrogenesis. Lithos 204, 125–43.CrossRefGoogle Scholar
Geng, H. Y., Sun, M., Yuan, C., Xiao, W. J., Xian, W. S., Zhao, G. C., Zhang, L. F., Wong, K. & Wu, F. Y. 2009. Geochemical, Sr–Nd and zircon U–Pb–Hf isotopic studies of Late Carboniferous magmatism in the West Junggar, Xinjiang: implications for ridge subduction? Chemical Geology 266, 373–98.CrossRefGoogle Scholar
Geng, H. Y., Sun, M., Yuan, C., Zhao, G. C. & Xiao, W. J. 2011. Geochemical and geochronological study of early Carboniferous volcanic rocks from the West Junggar: petrogenesis and tectonic implications. Journal of Asian Earth Sciences 42, 854–66.CrossRefGoogle Scholar
Gu, P. Y., Li, Y. J., Zhang, B., Tong, L. L. & Wang, J. N. 2009. LA-ICP-MS zircon U–Pb dating of gabbro in the Darbut ophiolite, western Junggar, China. Acta Petrologica Sinica 25, 1364–72 (in Chinese with English abstract).Google Scholar
Haase, K. M. & Devey, C. W. 1996. Geochemistry of lavas from the Ahu and Tupa volcanic fields, Easter hotspot, southeast Pacific: implications for intraplate magma genesis near a spreading axis. Earth and Planetary Science Letters 137, 129–43.CrossRefGoogle Scholar
Han, B. F., Ji, J. Q., Song, B., Chen, L. H. & Zhang, L. 2006. Late Paleozoic vertical growth of continental crust around the Junggar Basin, Xinjiang, China (Part I): timing of postcollisional plutonism. Acta Petrologica Sinica 22, 1077–86 (in Chinese with English abstract).Google Scholar
Hawkesworth, C. & Schersten, A. 2007. Mantle plumes and geochemistry. Chemical Geology 241, 319–31.CrossRefGoogle Scholar
Hawkesworth, C. J., Turner, S. P., McDermott, F., Peate, D. W. & van Calsteren, P. 1997. U–Th isotopes in arc magmas: implications for element transfer from subducted crust. Science 276, 551–5.CrossRefGoogle ScholarPubMed
He, G. Q., Chen, S. D., Xu, X., Li, J. Y. & Hao, J. 2004. An Introduction to Tectonic Map of Xinjiang and its Neighboring Area (1: 250000). Beijing: Geological Publishing House, 65 pp.Google Scholar
He, J. W., Zhu, W. B., Ge, R. F., Zheng, B. H. & Wu, H. L. 2014. Detrital zircon U–Pb ages and Hf isotopes of Neoproterozoic strata in the Aksu area, northwestern Tarim Craton: implications for supercontinent reconstruction and crustal evolution. Precambrian Research 254, 194209.CrossRefGoogle Scholar
Hémond, C., Hofmann, A. W., Vlastélic, I. & Nauret, F. 2006. Origin of MORB enrichment and relative trace element compatibilities along the Mid-Atlantic Ridge between 10° and 24°n. Geochemistry, Geophysics, Geosystems 7 (12). doi: 10.1029/2006GC001317.CrossRefGoogle Scholar
Hirano, N., Koppersw, A. A. P., Takahashi, A., Fujiwara, T. & Nakanishi, M. 2008. Seamounts, knolls and petit-spot monogenetic volcanoes on the subducting Pacific Plate. Basin Research 20, 543–53.CrossRefGoogle Scholar
Hirano, N., Takahashi, E., Yamamoto, J., Abe, N., Ingle, S. P., Kaneoka, I., Kimura, J., Hirata, T., Ishii, T., Ogawa, Y., Machida, S. & Suyehiro, K. 2006. Volcanism in response to plate flexure. Science 313, 1426–8.CrossRefGoogle ScholarPubMed
Hofmann, A. W. 1997. Mantle geochemistry: the message from oceanic volcanism. Nature 385, 219–29.CrossRefGoogle Scholar
Hofmann, A. W. & White, W. M. 1982. Mantle plumes from ancient oceanic crust. Earth and Planetary Science Letters 57, 421–36.CrossRefGoogle Scholar
Hu, A. Q., Jahn, B. M., Zhang, G. X., Chen, Y. B. & Zhang, Q. F. 2000. Crustal evolution and Phanerozoic crustal growth in northern Xinjiang: Nd isotopic evidence. Part I. Isotopic characterization of basement rocks. Tectonophysics 328, 1551.CrossRefGoogle Scholar
Irvine, T. N. & Baragar, W. R. A. 1971. A guide to the chemical classification of common volcanic rocks. Canadian Journal of Earth Sciences 8, 523–48.CrossRefGoogle Scholar
Jackson, M. G., Hart, S. R., Koppers, A. A. P., Staudigel, H., Konter, J., Blusztajn, J., Kurz, M. & Russell, M. A. 2007. The return of subducted continental crust in Samoan lavas. Nature 448, 684–7.CrossRefGoogle ScholarPubMed
Jahn, B. M., Capdevila, R., Liu, D., Vernon, A. & Badarch, G. 2004a. Sources of Phanerozoic granitoids in the transect Bayanhongor–Ulaan Baatar, Mongolia: geochemical and Nd isotopic evidence, and implications for Phanerozoic crustal growth. Journal of Asian Earth Sciences 23, 629–53.CrossRefGoogle Scholar
Jahn, B. M., Windley, B. F., Natalin, B. & Dobretsov, N. 2004b. Phanerozoic continental growth in central Asia. Journal of Asian Earth Sciences 23, 599603.CrossRefGoogle Scholar
Jahn, B. M., Wu, F. Y. & Chen, B. 2000a. Massive granitoid generation in Central Asia: Nd isotope evidence and implication for continental growth in the Phanerozoic. Episodes 23, 8292.Google Scholar
Jahn, B. M., Wu, F. Y. & Chen, B. 2000b. Granitoids of the Central Asian Orogenic Belt and continental growth in the Phanerozoic. Transactions of the Royal Society of Edinburgh: Earth Sciences 91, 181–93.CrossRefGoogle Scholar
Jian, P., Liu, D. Y., Shi, Y. R. & Zhang, F. Q. 2005. SHRIMP dating of SSZ ophiolites from northern Xinjiang Province, China: implications for generation of oceanic crust in the central Asian orogenic belt. In Structural and Tectonic Correlation across the Central Asia Orogenic Collage: North-Eastern Segment, Guidebook and Abstract Volume of the Siberian Workshop ICCP-480, ICE SBRAS (ed. Sklyarov, E. V.), pp. 246–51.Google Scholar
Kawai, K., Tsuchiya, T., Tsuchiya, J. & Maruyama, S. 2009. Lost primordial continents. Gondwana Research 16, 581–6.CrossRefGoogle Scholar
Khain, E. V., Bibikova, E. V., Kroner, A., Zhuravlev, D. Z., Sklyarov, E., Fedotova, A. A. & Kravchenko-Berezhnoy, I. R. 2002. The most ancient ophiolite of the Central Asian fold belt: U–Pb and Pb–Pb zircon ages for the Dunzhugur Complex, Eastern Sayan, Siberia, and geodynamic implications. Earth and Planetary Science Letters 199, 311–25.CrossRefGoogle Scholar
Kita, I., Yamamoto, M., Asakawa, Y., Nakagawa, M., Taguchi, S. & Hasegawa, H. 2001. Contemporaneous ascent of within-plate type and island-arc type magmas in the Beppu-Shimabara graben system, Kyushu island, Japan. Journal of Volcanology and Geothermal Research 111, 99109.CrossRefGoogle Scholar
Kovalenko, V. I., Yarmolyuk, V. V., Kovach, V. P., Kotov, A. B., Kozakov, I. K., Salnikova, E. B. & Larin, A. M. 2004. Isotope provinces, mechanisms of generation and sources of the continental crust in the Central Asian Mobile Belt: geological and isotopic evidence. Journal of Asian Earth Sciences 23, 605–27.CrossRefGoogle Scholar
Kröner, A., Alexeiev, D. V., Rojas-Agramonte, Y., Hegner, E., Wong, J., Xia, X., Belousova, E., Mikolaichuk, A. V., Seltmann, R., Liu, D., Kiselev, V. V. 2013. Mesoproterozoic (Grenville-age) terranes in the Kyrgyz North Tianshan: zircon ages and Nd–Hf isotopic constraints on the origin and evolution of basement blocks in the southern Central Asian Orogen. Gondwana Research 23, 272–95.CrossRefGoogle Scholar
Lassiter, J. C. & DePaolo, D. J. 1997. Plume/lithosphere interaction in the generation of continental and oceanic flood basalts: chemical and isotopic constraints. In Large Igneous Provinces: Continental, Oceanic, and Planetary Flood Volcanism (eds Mahoney, J. J. & Coffin, M. F.), pp. 335–55. Washington, DC: American Geophysical Union.Google Scholar
Le Bas, M. J., Le Maitre, R. W., Streckeiser, A. & Zanettin, B. 1986. Chemical classification of volcanic rocks based on total alkali-silica diagram. Journal of Petrology 27, 745–50.CrossRefGoogle Scholar
Levashova, N. M., Van der Voo, R., Abrajevitch, A. V. & Bazhenov, M. L. 2009. Paleomagnetism of mid-Paleozoic subduction-related volcanics from the Chingiz Range in NE Kazakhstan: the evolving paleogeography of the amalgamating Eurasian composite continent. Geological Society of America Bulletin 121, 555–73.CrossRefGoogle Scholar
Li, X. B. 2009. Thermal ionization mass spectrometry (TIMS) of the Sr–Nd–Pb isotope standard sample measured. Mineralogica Sinica 1, 2631 (in Chinese).Google Scholar
Li, D., He, D., Ma, D., Tang, Y., Kong, Y. & Tang, J. 2015a. Carboniferous–Permian tectonic framework and its later modifications to the area from eastern Kazakhstan to southern Altai: insights from the Zaysan-Jimunai basin evolution. Journal of Asian Earth Sciences 113, 1635.CrossRefGoogle Scholar
Li, D., He, D. F., Qi, X. F. & Zhang, N. N. 2015b. How was the Carboniferous Balkhash–West Junggar remnant ocean filled and closed? Insights from the Well Tacan-1 strata in the Tacheng Basin, NW China. Gondwana Research 27, 342–62.CrossRefGoogle Scholar
Li, Z. L., Li, Y. Q., Chen, H. L., Santosh, M., Yang, S. F., Xu, Y. G., Langmuir, C. H., Chen, Z. X., Yu, X. & Zou, S. Y. 2012. Hf isotopic characteristics of the Tarim Permian large igneous province rocks of NW China: implication for the magmatic source and evolution. Journal of Asian Earth Sciences 49, 191202.CrossRefGoogle Scholar
Litasov, K. D. 2011. Physicochemical conditions for melting in the Earth's mantle containing a C–O–H fluid (from experimental data). Russian Geology and Geophysics 52, 475–92.CrossRefGoogle Scholar
Liu, X. J., Xu, J. F., Wang, S. Q., Hou, Q. Y., Bai, Z. H. & Lei, M. 2009. Geochemistry and dating of E-MORB type mafic rocks from Dalabute ophiolite in West Junggar, Xinjiang and geological implications. Acta Petrologica Sinica 25, 1373–89 (in Chinese with English abstract).Google Scholar
Ludwig, K. R. 2003. User's Manual for Isoplot 3.00: A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center, Special Publication no. 4.Google Scholar
Ma, C., Xiao, W. J., Windley, B. F., Zhao, G. P., Han, C. M., Zhang, J. E., Luo, J. & Li, C. 2012. Tracing a subducted ridge-transform system in a late Carboniferous accretionary prism of the southern Altaids: orthogonal sanukitoid dyke swarms in Western Junggar, NW China. Lithos 140, 152–65.CrossRefGoogle Scholar
Mahoney, J. J., Frei, R., Tejada, M. L. G., Mo, X. X., Leat, P. T. & Nagler, T. F. 1998. Tracing the Indian Ocean mantle domain through time: isotopic results from old west Indian, east Tethyan, and South Pacific seafloor. Journal of Petrology 39, 1285–306.CrossRefGoogle Scholar
Mahoney, J. J., Jones, W. B., Frey, F. A., Salters, V. J. M., Pyle, D. G. & Davies, H. L. 1995. Geochemical characteristics of lavas from Broken Ridge, the Naturaliste Plateau and southernmost Kerguelen Plateau: oceanic plateau volcanism in the southeast Indian Ocean. Chemical Geology 120, 315–45.CrossRefGoogle Scholar
Maniar, P. D. & Piccoli, P. M. 1989. Tectonic discrimination of granitoids. Geological Society of America Bulletin 101, 635–43.2.3.CO;2>CrossRefGoogle Scholar
Maruyama, S. 1994. Plume tectonics. Journal of the Geological Society of Japan 100, 2449.CrossRefGoogle Scholar
Maruyama, S., Hasegawa, A., Santosh, M., Kogiso, T., Omori, S., Nakamura, H., Kawai, K. & Zhao, D. 2009. The dynamics of big mantle wedge, magma factory, and metamorphic-metasomatic factory in subduction zones. Gondwana Research 16, 414–30.CrossRefGoogle Scholar
Maruyama, S., Omori, S., Sensu, H., Kawai, K. & Windley, B. F. 2011. Pacific-type orogens: new concepts and variations in space and time from present to past. Journal of Geography 120, 115223 (in Japanese with English abstract and captions).CrossRefGoogle Scholar
Maruyama, S., Santosh, M. & Zhao, D. 2007. Superplume, supercontinent, and post-perovskite: mantle dynamics and anti-plate tectonics on the Core-Mantle Boundary. Gondwana Research 11, 737.CrossRefGoogle Scholar
Maruyama, S., Sawaki, Y., Ebisuzaki, T., Ikoma, M., Omori, S. & Komabayashi, T. 2014. Initiation of leaking Earth: an ultimate trigger of the Cambrian explosion. Gondwana Research 25, 910–44.CrossRefGoogle Scholar
McKenzie, D. & O'Nions, R. K. 1995. The source regions of oceanic island basalts. Journal of Petrology 36, 133–59.CrossRefGoogle Scholar
Meert, J. G. & Lieberman, B. S. 2008. The Neoproterozoic assembly of Gondwana and its relationship to the Ediacaran–Cambrian radiation. Gondwana Research 14, 521.CrossRefGoogle Scholar
Menzies, M. A., Long, A., Ingeram, G., Talnfl, M. & Janfcky, D. 1993. MORB peridotite–seawater interaction: experimental constrains on the behavior of trace elements, 87Sr/86Sr and 143Nd/144Nd ratios. In Magmatic Processes and Plate Tectonics (eds Pritchard, H. M., Alabaster, T., Harris, N. B. W. & Neary, C. R.), pp. 309–22. Geological Society of London, Special Publication no. 76.Google Scholar
Miyashiro, A. 1975. Classification, characteristics and origin of ophiolites. Journal of Geology 83, 249–81.CrossRefGoogle Scholar
Mullen, E. D. 1983. MnO-TiO2-P2O5: a minor element discriminant for basaltic rocks of oceanic environments and its implications for petrogenesis. Earth and Planetary Science Letters 62, 5362.CrossRefGoogle Scholar
Nauret, F., Abouchami, W., Galer, S. J. G., Hofmann, A. W., Hemond, C., Chauvel, C. & Dyment, J. 2006. Correlated trace element–Pb isotope enrichments in Indian MORB along 10°–20°S, Central Indian Ridge. Earth and Planetary Science Letters 245, 137–52.CrossRefGoogle Scholar
Niu, Y. L. 2004. Bulk-rock major and trace element compositions of abyssal peridotites: implications for mantle melting, melt extraction and post-melting processes beneath ocean ridges. Journal of Petrology 45, 2423–58.CrossRefGoogle Scholar
Niu, Y., Collerson, K. D. & Batiza, R. 1999. Origin of enriched-type mid-ocean ridge basalt at ridges far from mantle plumes: the East Pacific Rise at 11°20N. Journal of Geophysical Research 104, 7067–87.CrossRefGoogle Scholar
Niu, Y. L. & O'Hara, M. J. 2003. Origin of ocean island basalts: a new perspective from petrology, geochemistry and mineral physics considerations. Journal of Geophysical Research 108, 2209.CrossRefGoogle Scholar
Niu, Y., Regelous, M., Wendt, I. J., Batiza, R. & O'Hara, M. J. 2002. Geochemistry of near-EPR seamounts: importance of source vs. process and the origin of enriched mantle component. Earth and Planetary Science Letters 199, 327–45.CrossRefGoogle Scholar
Niu, Y., Wilson, M., Humphreys, E. R. & Hara, M. J. O. 2012. A trace element perspective on the source of ocean island basalts (OIB) and fate of subducted ocean crust (SOC) and mantle lithosphere (SML). Episodes 35, 310–27.Google Scholar
Nowell, G. M., Kempton, P. D., Noble, S. R., Fitton, J. G., Saunders, A. D., Mahoney, J. J. & Taylor, R. N. 1998. High precision Hf isotope measurements of MORB and OIB by thermal ionisation mass spectrometry: insights into the depleted mantle. Chemical Geology 149, 211–33.CrossRefGoogle Scholar
Ohtani, E., Litasov, K., Hosoya, T., Kubo, T. & Kondo, T. 2004. Water transport into the deep mantle and formation of a hydrous transition zone. Physics of the Earth and Planetary Interiors 143, 255–69.CrossRefGoogle Scholar
Ota, T., Utsunomiya, A., Uchio, Y., Isozaki, Y., Buslov, M. M., Ishikawa, A., Maruyama, S., Kitajima, K., Kaneko, Y., Yamamoto, H. & Katayama, I. 2007. Geology of the Gorny Altai subduction-accretion complex, southern Siberia: tectonic evolution of an Ediacaran–Cambrian intra-oceanic arc-trench system. Journal of Asian Earth Sciences 30, 666–95.CrossRefGoogle Scholar
Pearce, J. A. 1982. Trace elements characteristic of lavas from destructive plate boundaries. In Orogenic Andesites and Related Rocks (ed. Thorpe, R. S.), pp. 525–48. Chichester: Wiley.Google Scholar
Pearce, J. A. & Norry, M. J. 1979. Petrogenetic implication of Ti, Zr, Y, and Nb variations in volcanic rocks. Contributions to Mineralogy and Petrology 69, 3347.CrossRefGoogle Scholar
Pearce, N. J. G., Perkins, W. T., Westgate, J. A., Gorton, M. P., Jackson, S. E., Neal, C. R. & Chenery, S. P. 1997. A compilation of new and published major and trace element data for NIST SRM 610 and NIST SRM 612 glass reference materials. Geostandards Newsletter 21, 115–44.CrossRefGoogle Scholar
Pilet, S., Baker, M. B. & Stolper, E. M. 2008. Metasomatized lithosphere and the origin of alkaline lavas. Science 320, 916–19.CrossRefGoogle ScholarPubMed
Pilet, S., Hernandez, J., Sylvester, P. & Poujol, M. 2005. The metasomatic alternative for ocean island basalt chemical heterogeneity. Earth and Planetary Science Letters 236, 148–66.CrossRefGoogle Scholar
Pirajno, F., Ernst, R., Borisenko, A. S., Fedoseev, G. & Naumov, E. 2009. Intraplate magmatism in Central Asian and China and associated metallogeny. Ore Geology Reviews 35, 114–36.CrossRefGoogle Scholar
Pirajno, F., Mao, J. W., Zhang, Z. C., Zhang, Z. H. & Chai, F. M. 2008. The association of mafic-ultramafic intrusions and A-type magmatism in the Tianshan and Altay orogens, NW China: implications for geodynamic evolution and potential for the discovery of new ore deposits. Journal of Asian Earth Sciences 32, 165–83.CrossRefGoogle Scholar
Plank, T. & Langmuir, C. H. 1998. The chemical compositions of subducting sediments and its consequences for the crust and mantle. Chemical Geology 145, 325–94.CrossRefGoogle Scholar
Qi, L. & Grégoire, D. C. 2000. Determination of trace elements in twenty-six Chinese geochemistry reference materials by inductively coupled plasma mass spectrometry. Geostandards Newsletter 24, 5163.Google Scholar
Ren, R., Han, B. F., Xu, Z., Zhou, Y. Z., Liu, B., Zhang, L., Chen, J. F., Su, L., Li, J., Li, X. H. & Li, Q. L. 2014. When did the subduction first initiate in the southern Paleo-Asian Ocean: new constraints from a Cambrian intra-oceanic arc system in West Junggar, NW China. Earth and Planetary Science Letters 388, 222–36.CrossRefGoogle Scholar
Ringwood, A. E. 1991. Phase transformations and their bearing on the constitution and dynamics of the mantle. Geochimica et Cosmochimica Acta 55, 2083–110.CrossRefGoogle Scholar
Rogers, N. W. 1993. The isotope and trace element geochemistry of basalts from the volcanic islands of the southern Red Sea. Magmatic Processes and Plate Tectonics (eds Pritchard, H. M., Alabaster, T., Harris, N. B. W. & Neary, C. R.), pp. 455–67. Geological Society of London, Special Publication no. 76.Google Scholar
Rollinson, H. R. 1993. Using Geochemical Data: Evaluation, Presentation, Interpretation. New York: John Wiley & Sons.Google Scholar
Safonova, I. Y. 2009. Intraplate magmatism and oceanic plate stratigraphy of the PaleoAsian and Paleo-Pacific Oceans from 600 to 140 Ma. Ore Geology Reviews 35, 137–54.CrossRefGoogle Scholar
Safonova, I. Y., Buslov, M. M., Simonov, V. A., Izokh, A. E., Komiya, T., Kurganskaya, E. V. & Ohno, Т. 2011a. Geochemistry, petrogenesis and geodynamic origin of basalts from the Katun accretionary complex of Gorny Altay, south-western Siberia. Russian Geology and Geophysics 52, 421–42.CrossRefGoogle Scholar
Safonova, I. Y., Litasov, K. & Maruyama, S. 2015. Triggers and sources of volatile-bearing plumes in the mantle transition zone. Geoscience Frontiers 6, 685.CrossRefGoogle Scholar
Safonova, I. & Maruyama, S. 2014. Asia: a frontier for a future supercontinent. International Geology Review 56, 1051–71.CrossRefGoogle Scholar
Safonova, I. Y. & Santosh, M. 2014. Accretionary complexes in the Asia-Pacific region: tracing archives of ocean plate stratigraphy and tracking mantle plumes. Gondwana Research 25, 126–58.CrossRefGoogle Scholar
Safonova, I. Y., Sennikov, N. V., Komiya, T., Bychkova, Y. V. & Kurganskaya, E. V. 2011b. Geochemical diversity in oceanic basalts hosted by the Zasur'ya accretionary complex, NW Russian Altai, Central Asia: implications from trace elements and Nd isotopes. Journal of Asian Earth Sciences 42, 191207.CrossRefGoogle Scholar
Safonova, I. Y., Simonov, V. A., Obut, O. T., Kurganskaya, E. V., Romer, R. & Seltmann, R. 2012. Late Paleozoic oceanic basalts hosted by the Char suture-shear zone, East Kazakhstan: geological position, geochemistry, petrogenesis and tectonic setting. Journal of Asian Earth Sciences 49, 2039.CrossRefGoogle Scholar
Safonova, I. Y., Utsunomiya, A., Kojima, S., Nakae, S., Tomurtogoo, O., Filippov, A. N. & Koizumi, K. 2009. Pacific superplume-related oceanic basalts hosted by accretionary complexes of Central Asia, Russian Far East and Japan. Gondwana Research 16, 587608.CrossRefGoogle Scholar
Saunders, A. D., Norry, M. J. & Tarney, J. 1988. Origin of MORB and chemically-depleted mantle reservoirs: trace element constraints. Journal of Petrology 1, 415–45.CrossRefGoogle Scholar
Scott, C. R., Mueller, W. U. & Pilote, P. 2002. Physical volcanology, stratigraphy, and lithogeochemistry of an Archean volcanic arc: evolution from plume-related volcanism to arc rifting of SE Abitibi Greenstone Belt, Val d'Or, Canada. Precambrian Research 115, 223–60.CrossRefGoogle Scholar
Sengör, A. M. C. & Natalin, B. A. 1996. Turkic-type orogeny and its role in the making of the continental crust. Annual Review of Earth and Planetary Sciences 24, 263337.CrossRefGoogle Scholar
Sengör, A. M. C., Natalin, B. A. & Burtman, V. S. 1993. Evolution of the Altaid tectonic collage and Paleozoic crustal growth in Eurasia. Nature 364, 299307.CrossRefGoogle Scholar
Senshu, H., Maruyama, S., Rino, S. & Santosh, M. 2009. Role of tonalite-trodhjemite granite (TTG) crust subduction on the mechanism of supercontinent breakup. Gondwana Research 15, 433–42.CrossRefGoogle Scholar
Shen, P., Shen, Y. C., Li, X. H., Pan, H. D., Zhu, H. P., Meng, L. & Dai, H. W. 2012. Northwestern Junggar Basin, Xiemisitai Mountains, China: a geochemical and geochronological approach. Lithos 140, 103–18.CrossRefGoogle Scholar
Shervais, J. 1982. Ti–V plots and the petrogenesis of modern and ophiolitic lavas. Earth and Planetary Science Letters 59, 101–18.CrossRefGoogle Scholar
Sleep, N. H. 1992. Hotspot volcanism and mantle plumes. Annual Review of Earth and Planetary Sciences 20, 1943.CrossRefGoogle Scholar
Smith, R. E. & Smith, S. E. 1976. Comments on the use of Ti, Zr, Y, Sr, K, P and Na in classification of basaltic magmas. Earth and Planetary Science Letters 32, 114–20.CrossRefGoogle Scholar
Stein, M. & Hofmann, A. W. 1994. Mantle plumes and episodic crustal growth. Nature 37, 63–8.CrossRefGoogle Scholar
Su, B. X., Qin, K. Z., Sakyi, P. A., Li, X. H., Yang, Y. H., Sun, H., Tang, D. M., Liu, P. P., Xiao, Q. H. & Malaviarachchi, S. P. K. 2011. U–Pb ages and Hf–O isotopes of zircons from Late Paleozoic mafic-ultramafic units in the southern Central Asian Orogenic Belt: tectonic implications and evidence for an Early-Permian mantle plume. Gondwana Research 20, 516–31.CrossRefGoogle Scholar
Sun, S. S. & McDonough, W. F. 1989. Chemical and isotopic systematics in ocean basalt: implication for mantle composition and processes. In Magmatism in the Ocean Basins (eds Saunders, A. D. & Norry, M. J.), pp. 313–45. Geological Society of London, Special Publication no. 42.Google Scholar
Tang, G. J., Wang, Q., Wyman, D. A., Li, Z. X., Zhao, Z. H., Jia, X. H. & Jiang, Z. Q. 2010. Ridge subduction and crustal growth in the Central Asian Orogenic Belt: evidence from Late Carboniferous adakites and high-Mg diorites in the western Junggar region, northern Xinjiang (west China). Chemical Geology 277, 281300.CrossRefGoogle Scholar
Tang, G. J., Wang, Q., Wyman, D. A., Li, Z. X., Zhao, Z. H. & Yang, Y. H. 2012a. Late Carboniferous high εNd(t)–εHf(t) granitoids, enclaves and dikes in western Junggar, NW China: ridge-subduction-related magmatism and crustal growth. Lithos 140–141, 86102.CrossRefGoogle Scholar
Tang, G. J., Wyman, D. A., Wang, Q., Li, J., Li, Z. X., Zhao, Z. H. & Sun, W. D. 2012b. Asthenosphere-lithosphere interaction triggered by a slab window during ridge subduction: trace element and Sr–Nd–Hf–Os isotopic evidence from Late Carboniferous tholeiites in the western Junggar area (NW China). Earth and Planetary Science Letters 329, 8496.CrossRefGoogle Scholar
Tian, W., Campel, I. H., Allen, C. M., Guan, P., Pan, W. Q., Chen, M. M., Yu, H. J. & Zhu, W. P. 2010. The Tarim picrite-basalt-rhyolite suite, a Permian flood basalt from northwest China with contrasting rhyolites produced by fractional crystallization and anatexis. Contributions to Mineralogy and Petrology 160, 407–25.CrossRefGoogle Scholar
Tu, X. L., Hong, Z., Deng, W. F., Ling, M. X., Liang, H. Y., Liu, Y. & Sun, W. D. 2011. Application of RESOlution laser ablation ICPMS in trace element analyses. Geochimica 40, 8398 (in Chinese with English abstract).Google Scholar
Vermeesch, P. 2006. Tectonic discrimination diagrams revisited. Geochemistry, Geophysics, Geosystems 7, 466–80.CrossRefGoogle Scholar
Vladimirov, A. G., Kruk, N. N., Khromykh, S. V., Polyansky, O. P., Chervov, V. V., Vladimirov, V. G., Travin, A. V., Babin, G. A., Kuibida, M. L. & Khomyakov, V. D. 2008. Permian magmatism and lithospheric deformation in the Altai caused by crustal and mantle thermal process. Russian Geology and Geophysics 49, 468–79 (in Russian).CrossRefGoogle Scholar
Wang, G. R. 1996. Classification of tectonic units and geologic evolution in the northern Xinjiang and neighboring area. Xinjiang Geology 14, 1227 (in Chinese with English abstract).Google Scholar
Wang, B., Chen, Y., Zhan, S., Shu, L., Faure, M., Cluzel, D., Charvet, J. & Laurent-Charvet, S. 2007. Primary Carboniferous and Permian paleomagnetic results from the Yili Block (NW China) and their implications on the geodynamic evolution of Chinese Tianshan Belt. Earth and Planetary Science Letters 263, 288308.CrossRefGoogle Scholar
Wang, M., Li, X. F., Guo, W., Li, Y. L., Shi, Z. L. & Lu, K. G. 2012. Geological characteristics of Baiyanghe Beryllium-Uranium deposits in Xuemisitan volcanic belt, Xinjiang. Mineral Exploration 3, 3440 (in Chinese with English abstract).Google Scholar
Wang, Z. H., Sun, S., Li, J. L., Hou, Q. L., Qin, K. Z., Xiao, W. J. & Hao, J. 2003. Paleozoic tectonic evolution of the northern Xinjiang, China: geochemical and geochronological constraints from the ophiolites. Tectonics 22, 1014.CrossRefGoogle Scholar
Wedepohl, K. H. 1995. The composition of the continental crust. Geochimica et Cosmochimica Acta 59, 1217–32.CrossRefGoogle Scholar
White, W. M. & Duncan, R. A. 1996. Geochemistry and geochronology of the Society Islands: new evidence for deep mantle recycling. In Earth Processes: Reading the Isotopic Code (eds Basu, A. & Hart, S.), pp. 183206. American Geophysical Union, Geophysical Monograph vol. 95. Washington, DC, USA.Google Scholar
White, W. M. & Hofmann, A. W. 1982. Sr and Nd isotope geochemistry of oceanic basalts and mantle evolution. Nature 296, 821–5.CrossRefGoogle Scholar
Wilhem, C., Windley, B. F. & Stampfli, G. M. 2012. The Altaids of Central Asia: a tectonic and evolutionary innovative review. Earth-Science Reviews 113, 303–41.CrossRefGoogle Scholar
Windley, B. F., Alexeiev, D., Xiao, W. J., Kröner, A. & Badarch, G. 2007. Tectonic models for accretion of the Central Asian Orogenic Belt. Journal of the Geological Society, London 164, 3147.CrossRefGoogle Scholar
XBGMR. 1983. Introduction of Geology in Baiyanghe Area. Map Scale 1:200000. Bureau of Geology and Mineral Resources of Xinjiang Autonomous Region, 296 pp.Google Scholar
Xia, L. Q., Xu, X. Y., Xia, Z. C., Li, X. M., Ma, Z. P. & Wang, L. S. 2003. Carboniferous post collisional rift volcanism of the Tianshan Mountains, Northwestern China. Acta Geologica Sinica 77, 338–60.Google Scholar
Xia, L. Q., Xu, X. Y., Xia, Z. C., Li, X. M., Ma, Z. P. & Wang, L. S. 2004. Petrogenesis of Carboniferous rift-related volcanic rocks in the Tianshan, northwestern China. Geological Society of American Bulletin 116, 419–33.CrossRefGoogle Scholar
Xiao, W. J., Han, C. M., Yuan, C., Sun, M., Lin, S. F., Chen, H. L., Li, Z. L., Li, J. L. & Sun, S. 2008. Middle Cambrian to Permian subduction-related accretionary orogenesis of North Xinjiang, NW China: implications for the tectonic evolution of Central Asia. Journal of Asian Earth Sciences 32, 102–17.CrossRefGoogle Scholar
Xiao, W. J., Han, C. M., Yuan, C., Sun, M., Zhao, G. C. & Shan, Y. H. 2010a. Transitions among Mariana-, Japan-, Cordillera- and Alaska-type arc systems and their final juxtapositions leading to accretionary and collisional orogenesis. In The Evolving Continents: Understanding the Processes of Continental Growth (eds Kusky, T. M., Zhai, M.-G. & Xiao, W.), pp. 3553. Geological Society of London, Special Publication no. 338.Google Scholar
Xiao, W. J., Huang, B. C., Han, C. M., Sun, S. & Li, J. L. 2010b. A review of the western part of the Altaids: a key to understanding the architecture of accretionary orogens. Gondwana Research 18, 253–73.CrossRefGoogle Scholar
Xiao, W. J. & Santosh, M. 2014. The western Central Asian Orogenic Belt: a window to accretionary orogenesis and continental growth. Gondwana Research 25, 1429–44.CrossRefGoogle Scholar
Xiao, W. J., Sun, M. & Santosh, M. 2015. Continental reconstruction and metallogeny of the Circum-Junggar areas and termination of the southern Central Asian Orogenic Belt. Geoscience Frontiers 6, 137–40.CrossRefGoogle Scholar
Xiao, W. J., Windley, B. F., Allen, M. & Han, C. M. 2013. Paleozoic multiple accretionary and collisional tectonics of the Chinese Tianshan orogenic collage. Gondwana Research 23, 1316–41.CrossRefGoogle Scholar
Xiao, W.J., Windley, B. F., Badarch, G., Sun, S., Li, J. L., Qin, K. Z. & Wang, Z. H. 2004. Palaeozoic accretionary and convergent tectonics of the southern Altaids: implications for the lateral growth of Central Asia. Journal of the Geological Society, London 161, 339–42.CrossRefGoogle Scholar
Xiao, W. J., Windley, B. F., Huang, B. C., Han, C. M., Yuan, C., Chen, H. L., Sun, M., Sun, S. & Li, J. L. 2009. End-Permian to mid-Triassic termination of the accretionary processes of the southern Altaids: implications for the geodynamic evolution, Phanerozoic continental growth, and metallogeny of Central Asia. International Journal of Earth Sciences 98, 1189–287.CrossRefGoogle Scholar
Xiao, W. J., Windley, B. F., Sun, S., Li, J. L., Huang, B. C., Han, C. M., Yuan, C., Sun, M. & Chen, H. L. 2015. A tale of amalgamation of three collage systems in the Permian-Middle Triassic in Central-East Asia: oroclines, sutures, and terminal accretion. Annual Review of Earth & Planetary Sciences 43, 16.116.31.CrossRefGoogle Scholar
Xiu, X. Q., Fan, H. H., Ma, H. F. & Yi, L. S. 2011. The wall rock alteration and its geochemical characteristics of Baiyanghe uranium and beryllium deposit, Xinjiang. Uranium Geology 27, 215–20.Google Scholar
Xu, Z., Han, B. F., Ren, R., Zhou, Y. Z., Zhang, L., Chen, J. F., Su, L., Li, X. H. & Liu, D. Y. 2012. Ultramafic-mafic mélange, island arc and post-collisional intrusions in the Mayile Mountain, West Junggar, China: implications for Paleozoic intra-oceanic subduction-accretion process. Lithos 132–133, 141–61.CrossRefGoogle Scholar
Xu, Q. Q., Ji, J. Q., Zhao, L., Gong, J. F., Zhou, J., He, G. Q., Zhong, D. L., Wang, J. D. & Griffiths, L. 2013. Tectonic evolution and continental crust growth of Northern Xinjiang in northwestern China: remnant ocean model. Earth-Science Reviews 126, 178205.CrossRefGoogle Scholar
Xu, Y. G., Wei, X., Luo, Z. Y., Liu, H. Q. & Cao, J. 2014. The early Permian Tarim large igneous province: main characteristics and a plume incubation model. Lithos 204, 2035.CrossRefGoogle Scholar
Yakubchuk, A. S. 2004. Architecture and mineral deposit settings of Altaid orogenic collage: a revised model. Journal of Asian Earth Sciences 23, 761–79.CrossRefGoogle Scholar
Yakubchuk, A. S. & Degtyarev, K. E. 1998. The character of link between the Chingiz and Boshchekul trends in the Caledonides of northeastern central Kazakhstan. Doklady Akademii Nauk 298, 1193–8 (in Russian).Google Scholar
Yamamoto, S., Senshu, H., Rino, S., Omori, S. & Maruyama, S. 2009. Granite subduction: arc subduction, tectonic erosion and sediment subduction. Gondwana Research 15, 443–53.CrossRefGoogle Scholar
Yang, S. F., Li, Z. L., Chen, H. L., Santosh, M., Dong, C. W. & Yu, X. 2007. Permian bimodal dyke of Tarim Basin, NW China: geochemical characteristics and tectonic implications. Gondwana Research 12, 113–20.CrossRefGoogle Scholar
Yang, G. X., Li, Y. J., Gu, P. Y., Tong, L. L. & Zhang, H. W. 2012a. Geochronological and geochemical study of the Darbut Ophiolitic Complex in the West Junggar (NW China): implications for petrogenesis and tectonic evolution. Gondwana Research 21, 1037–49.CrossRefGoogle Scholar
Yang, G. X., Li, Y. J., Safonova, I., Yi, S. X., Tong, L. L. & Seltmann, R. 2014a. Early Carboniferous volcanic rocks of West Junggar in the western Central Asian Orogenic Belt: implications for a supra-subduction system. International Geology Review 56, 823–44.CrossRefGoogle Scholar
Yang, G. X., Li, Y. J., Santosh, M., Gu, P. Y., Yang, B. K., Zhang, B., Wang, H. B., Zhong, X. & Tong, L. L. 2012b. A Neoproterozoic seamount in the Paleoasian Ocean: evidence from zircon U–Pb geochronology and geochemistry of the Mayile ophiolitic mélange in West Junggar, NW China. Lithos 140–141, 5365.CrossRefGoogle Scholar
Yang, G. X., Li, Y. J., Santosh, M., Yang, B. K., Yan, J., Zhang, B. & Tong, L. L. 2012c. Geochronology and geochemistry of basaltic rocks from the Sartuohai ophiolitic mélange, NW China: implications for a Devonian mantle plume within the Junggar Ocean. Journal of Asian Earth Sciences 59, 141–55.CrossRefGoogle Scholar
Yang, G., Li, Y., Xiao, W. & Tong, L. 2015. OIB-type rocks within West Junggar ophiolitic mélanges: evidence for the accretion of seamounts. Earth-Science Reviews 150, 477–96.CrossRefGoogle Scholar
Yang, G. X., Li, Y. J., Yan, J., Tong, L. L., Han, X. & Wang, Y. B. 2014b. Geochronological and geochemical constraints on the origin of the 304 ± 5 Ma Karamay A-type granites from West Junggar, Northwest China: implications for understanding the Central Asian Orogenic Belt. International Geology Review 56, 393407.CrossRefGoogle Scholar
Yin, J. Y., Chen, W., Yuan, C., Yu, S., Xiao, W. J., Long, X. P., Li, J. & Sun, J. B. 2015. Petrogenesis of Early Carboniferous adakitic dikes, Sawur region, northern West Junggar, NW China: implications for geodynamic evolution. Gondwana Research 27, 1630–45.CrossRefGoogle Scholar
Yin, J. Y., Long, X. P., Yuan, C., Sun, M., Zhao, G. C. & Geng, H. Y. 2013. A Late Carboniferous–Early Permian slab window in the West Junggar of NW China: geochronological and geochemical evidence from mafic to intermediate dikes. Lithos 175–176, 146–62.CrossRefGoogle Scholar
Yin, J. Y., Yuan, C., Sun, M., Long, X. P., Zhao, G. C., Wong, K. P., Geng, H. Y. & Cai, K. 2010. Late Carboniferous high-Mg dioritic dikes in Western Junggar, NW China: geochemical features, petrogenesis and tectonic implications. Gondwana Research 17, 145–52.CrossRefGoogle Scholar
Zhang, C., Huang, X. & Zhai, M. G. 1995. The geological characteristics, tectonic settings and ages of ophiolite in Western Junggar, Xinjiang. Collected Papers of the Institute of Geology: Beijing, Chinese Academy of Sciences 8, 165218 (in Chinese).Google Scholar
Zhang, Y. Y. & Guo, Z. J. 2010. New constraints on formation ages of ophiolites in northern Junggar and comparative study on their connection. Acta Petrologica Sinica 26, 421–30 (in Chinese with English abstract).Google Scholar
Zhang, C. L., Li, Z. X., Li, X. H., Xu, Y. G., Zhou, G. & Ye, H. M. 2010. A Permian large igneous province in Tarim and Central Asian orogenic belt, NW China: Results of a ca. 275 Ma mantle plume? Geological Society of America Bulletin 122, 2020–40.CrossRefGoogle Scholar
Zhang, C. L., Li, X. H., Li, Z. X., Ye, H. M. & Li, C. N. 2008. A Permian layered intrusive complex in the Western Tarim Block, northwestern China: product of a ca. 275 Ma mantle plume? The Journal of Geology 116, 269–87.CrossRefGoogle Scholar
Zhang, J. E., Xiao, W. J., Han, C. M., Ao, S. J., Yuan, C., Sun, M., Geng, H. Y., Zhao, G. C., Guo, Q. Q. & Ma, C. 2011a. Kinematics and age constraints of deformation in a Late Carboniferous accretionary complex in Western Junggar, NW China. Gondwana Research 19, 958–74.CrossRefGoogle Scholar
Zhang, J. E., Xiao, W. J., Han, C. M., Mao, Q. G., Ao, S. J., Guo, Q. Q. & Ma, C. 2011b. A Devonian to Carboniferous intra-oceanic subduction system in Western Junggar, NW China. Lithos 125, 592606.CrossRefGoogle Scholar
Zhang, C., Zhai, M. G., Allen, M. B., Saunders, A. D., Wang, G. R. & Huang, X. 1993. Implications of Paleozoic ophiolites from Western Junggar, NW China, for the tectonics of Central-Asia. Journal of the Geological Society, London 150, 551–61.Google Scholar
Zhang, X. & Zhang, H. 2014. Geochronological, geochemical, and Sr-Nd-Hf isotopic studies of the Baiyanghe A-type granite porphyry in the Western Junggar: implications for its petrogenesis and tectonic setting. Gondwana Research 25, 1554–69.CrossRefGoogle Scholar
Zhang, C. L. & Zou, H. B. 2013. Comparison between the Permian mafic dykes in Tarim and the western part of Central Orogenic Belt (CAOB), NW China: implications for two mantle domains of the Permian Tarim Large Igneous Province. Lithos 174, 1527.CrossRefGoogle Scholar
Zhang, C. L., Zou, H. B., Yao, C. Y. & Dong, Y. G. 2014. Origin of Permian gabbroic intrusions in the southern margin of the Altai Orogenic Belt: a possible link to the Permian Tarim mantle plume? Lithos 204, 112–24.CrossRefGoogle Scholar
Zhao, L. & He, G. Q. 2013. Tectonic entities connection between West Junggar (NW China) and East Kazakhstan. Journal of Asian Earth Sciences 72, 2532.CrossRefGoogle Scholar
Zhou, J. X. 1999. Geochemistry and Petrogenesis of Igneous Rocks Containing Amphibole and Mica: A Case Study of Plate Collision Involving Scotland and Himalayas. New York and Beijing: Science Press, pp. 4172.Google Scholar
Zhou, T. F., Yuan, F., Fan, Y., Zhang, D. Y., Cooke, D. & Zhao, G. C. 2008. Granites in the Saur region of the west Junggar, Xinjiang Province, China: geochronological and geochemical characteristics and their geodynamic significance. Lithos 106, 191206.CrossRefGoogle Scholar
Zhu, Y. F., Chen, B. & Qiu, T. 2015. Geology and geochemistry of the Baijiantan-Baikouquan ophiolitic mélanges: implications for geological evolution of west Junggar, Xinjiang, NW China. Geological Magazine 152, 4169.CrossRefGoogle Scholar
Zhu, Y. F. & Xu, X. 2006. The discovery of Early Ordovician ophiolite mélange in Taerbahatai Mts., Xinjiang, NW China. Acta Petrologica Sinica 22, 2833–42 (in Chinese with English abstract).Google Scholar
Zorin, Y. A., Turutanov, E. K., Kozhevnikov, V. M., Rasskazov, S. V. & Ivanov, A. V. 2006. The nature of Cenozoic upper mantle plumes in East Siberia (Russia) and Central Mongolia. Russian Geology and Geophysics 47, 1056–70.Google Scholar