Skip to main content Accessibility help
×
Home
Hostname: page-component-99c86f546-kpmwg Total loading time: 0.144 Render date: 2021-12-06T02:57:22.483Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Xce genotype has no impact on the effect of imprinting on X-chromosome expression in the mouse yolk sac endoderm

Published online by Cambridge University Press:  14 April 2009

Theodor Bücher
Affiliation:
Institut für Physiologische Chemie, Physikalische Biochemie und Zellbiologie, Universitat München, 8000 München, Goethestr. 33, Federal Republic of Germany
Ingrid M. Linke
Affiliation:
Institut für Physiologische Chemie, Physikalische Biochemie und Zellbiologie, Universitat München, 8000 München, Goethestr. 33, Federal Republic of Germany
Manfred Dünnwald
Affiliation:
Institut für Physiologische Chemie, Physikalische Biochemie und Zellbiologie, Universitat München, 8000 München, Goethestr. 33, Federal Republic of Germany
John D. West
Affiliation:
MRC Radiobiology Unit, Chilton, Didcot, Oxon OX11 0RD, England
Bruce M. Cattanach
Affiliation:
MRC Radiobiology Unit, Chilton, Didcot, Oxon OX11 0RD, England
Rights & Permissions[Opens in a new window]

Summary

HTML view is not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The effect of the Xce (x-chromosome controlling element) genotype on the randomness of X-chromosome inactivation in the mouse was studied by monitoring the expression of the X-linked locus pgk-1. The main aim was to test whether the Xce genotype modified the preferential expression of the maternally derived X-chromosome in the yolk sac endoderm. Quantitative electrophoresis of phosphoglycerate kinase (PGK-1) was used to study Pgk-1 expression in the foetus, yolk sac mesoderm and yolk sac endoderm at 13½ days post coitum. The Xcea/Xcec genotype caused non-random X-chromosome expression in the foetus and yolk sac mesoderm. However, there was no evidence that the Xce genotype moderates the preferential expression of the maternally derived X-chromosome in the yolk sac endoderm, as reported by Rastan & Cattanach (1983).

Type
Research Article
Copyright
Copyright © Cambridge University Press 1986

References

Barton, S. C., Surani, M. A. H. & Norris, M. L. (1984). Role of paternal and maternal genomes in mouse development. Nature 211, 374376.CrossRefGoogle Scholar
Brown, S. W. & Chandra, H. S. (1973). Inactivation system of the mammalian X-chromosome. Proceedings of the National Academy of Sciences, USA 70, 195199.CrossRefGoogle ScholarPubMed
Bücher, Th., Bender, W., Fundele, R., Hofner, H. & Linke, I. (1980). Quantitative evaluation of electrophoretic allo-and isozyme patterns for developmental genetics. FEBS Letters 115, 319324.CrossRefGoogle Scholar
Cattanach, B. M. (1975). Control of chromosome inactivation. Annual Review of Genetics 9, 118.CrossRefGoogle ScholarPubMed
Cattanach, B. M., Bücher, Th. & Andrews, S. J. (1982). Location of Xce in the mouse X-chromosome and effects on PGK-1 expression. Genetical Research 40, 103104.Google Scholar
Cattanach, B. M., Bücher, Th. & Andrews, S. J. (1983). PGK-1 expression in Pgk-1a/Pgk-1b feral mice associated with Xce allele substitutions. Genetical Research 41, 312313.Google Scholar
Cattanach, B. M. & Kirk, M. (1985). Differential activity of maternally and paternally derived chromosome regions in mice. Nature 315, 496498.CrossRefGoogle ScholarPubMed
Cattanach, B. M. & Perez, J. N. (1970). Parental influence on X-autosome translocation-induced variegation in the mouse. Genetical Research 15, 4353.CrossRefGoogle ScholarPubMed
Chandra, H. S. & Brown, S. W. (1975). Chromosome imprinting and the mammalian X-chromosome. Nature 253, 165168.CrossRefGoogle ScholarPubMed
Crouse, H. V. (1960). The controlling element in sex chromosome behaviour in Sciara. Genetics 45, 14291443.Google ScholarPubMed
Falconer, D. S., Isaacson, J. H. & Gauld, I. K. (1982). Non-random X chromosome inactivation in the mouse: difference of reaction to imprinting. Genetical Research 39, 237259.CrossRefGoogle ScholarPubMed
Forrester, L. M. & Ansell, J. D. (1985). Parental influences on X-chromosome expression. Genetical Research 45, 95100.CrossRefGoogle ScholarPubMed
Frels, W. I. & Chapman, V. M. (1980). Expression of the maternally derived X-chromosome in the mural trophoblast of the mouse. Journal of Embryology and Experimental Morphology 56, 179190.Google ScholarPubMed
Frels, W. I., Rossant, J. & Chapman, V. M. (1979). Maternal X-chromosome expression in mouse chorionic ectoderm. Developmental Genetics 1, 123132.CrossRefGoogle Scholar
Harper, M. I., Fosten, M. & Monk, M. (1982). Preferential paternal X inactivation in extraembryonic tissues of early mouse embryos. Journal of Embryology and Experimental Morphology 67, 127135.Google ScholarPubMed
Johnston, P. G. & Cattanach, B. M. (1981). Controlling elements in the mouse. IV. Evidence of non-random X-inactivation. Genetical Research 37, 151160.CrossRefGoogle ScholarPubMed
Kindred, B. M. (1961). A maternal effect on vibrissa score due to the Tabby gene. Australian Journal of Biological Sciences 14, 627636.Google Scholar
Krietsch, W. K. G., Fundele, R., Kuntz, G. W. K., Pehlau, M., Burki, K. & Illmensee, K. (1982). The expression of X-linked phosphoglycerate kinase in the early mouse embryo. Differentiation 23, 141144.CrossRefGoogle ScholarPubMed
Levak-Švajger, B., Švajger, A. & Škreb, N. (1969). Separation of germ layers in presomite rat embryos. Experientia 25, 13111312.CrossRefGoogle Scholar
McGrath, J. & Solter, D. (1984). Completion of mouse embryogenesis requires both the maternal and paternal genomes. Cell 37, 179183.CrossRefGoogle ScholarPubMed
McMahon, A., Fosten, M. & Monk, M. (1981). Random X-chromosome inactivation in female primordial germ cells in the mouse. Journal ofEmbryology and Experimental Morphology 64, 251258.Google ScholarPubMed
McMahon, A., Fosten, M. & Monk, M. (1983). X-chromosome inactivation mosaicism in the three germ layers and the germ line of the mouse embryo. Journal of Embryology and Experimental Morphology 74, 207220.Google ScholarPubMed
Papaioannou, V. E. & West, J. D. (1981). Relationship between the parental origin of the X-chromosomes, embryonic cell lineage and X-chromosome expression in mice. Genetical Research 37, 183197.CrossRefGoogle ScholarPubMed
Papaioannou, V. E., West, J. D., Bücher, Th. & Linke, I. (1981). Nonrandom X-chromosome expression early in mouse development. Developmental Genetics 2, 305315.CrossRefGoogle Scholar
Quinn, P., Barros, C. & Whittingham, D. G. (1982). Preservation of hamster oocytes to assay the fertilizing capacity of human spermatozoa. Journal of Reproduction and Fertility 66, 161168.CrossRefGoogle ScholarPubMed
Rabes, H. M., Bücher, Th., Hartmann, A., Linke, I. & Dünnwald, M. (1982). Clonal growth of carcinogen-induced enzyme-deficient preneoplastic cell populations in mouse liver. Cancer Research, 42, 32203227.Google ScholarPubMed
Rastan, S. (1982). Primary non-random X-inactivation caused by controlling elements in the mouse demonstrated at the cellular level. Genetical Research 40, 139147.CrossRefGoogle ScholarPubMed
Rastan, S. & Cattanach, B. M. (1983). Interaction between the Xce locus and imprinting of the paternal chromosome in mouse yolk-sac endoderm. Nature 303, 635637.CrossRefGoogle ScholarPubMed
Surani, M. A. H., Barton, S. C. & Norris, M. L. (1984). Development of reconstituted mouse eggs suggest imprinting of genome during gametogenesis. Nature 308, 548550.CrossRefGoogle Scholar
Takagi, N. (1978). Preferential inactivation of the paternally derived X chromosome in mice. In Genetic Mosaics and Chimeras in Mammals (ed. Russell, L. B.), pp. 341360. New York and London: Plenum Press.CrossRefGoogle Scholar
Takagi, N. & Sasaki, M. (1975). Preferential inactivation of the paternally derived X chromosome in the extraembryonic membranes of the mouse. Nature 256, 640642.CrossRefGoogle ScholarPubMed
Takagi, N., Wake, N. & Sasaki, M. (1978). Cytologic evidence for preferential inactivation of the paternally derived X-chromosome in XX mouse blastocyts. Cytogenetics and Cell Genetics 20, 240248.CrossRefGoogle Scholar
West, J. D. (1982). X-chromosome expression during mouse embryogenesis. In Genetic Control of Gamete Production and Function: Proceedings of the Serono Clinical Colloquia on Reproduction 3 (eds. Crosignani, P. G., Rubin, B. L. and Fraccaro, M.), pp. 4991. London and New York: Academic Press/Grune and Stratton.Google Scholar
West, J. D., Bücher, Th., Linke, I. M. & Dünnwald, M. (1984). Investigation of variability among mouse aggregation chimaeras and X-chromosome inactivation mosaics. Journal of Embryology and Experimental Morphology 84, 309329.Google ScholarPubMed
West, J. D., Frels, W. I., Chapman, V. M. & Papaioannou, V. E. (1977). Preferential expression of the maternally derived X-chromosome in the mouse yolk sac. Cell 12, 873882.CrossRefGoogle ScholarPubMed
West, J. D., Papaioannou, V. E., Frels, W. I. & Chapman, V. M. (1978). Preferential expression of the maternally derived X-chromosome in extraembryonic tissues of the mouse. In Genetic Mosaics and Chimeras in Mammals (ed. Russell, L. B.), pp. 361377. New York and London: Plenum Press.CrossRefGoogle Scholar
You have Access

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Xce genotype has no impact on the effect of imprinting on X-chromosome expression in the mouse yolk sac endoderm
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Xce genotype has no impact on the effect of imprinting on X-chromosome expression in the mouse yolk sac endoderm
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Xce genotype has no impact on the effect of imprinting on X-chromosome expression in the mouse yolk sac endoderm
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *