Hostname: page-component-848d4c4894-mwx4w Total loading time: 0 Render date: 2024-06-25T21:47:29.045Z Has data issue: false hasContentIssue false

Sex-determinants and their distribution in various populations of Musca domestica L. of Western Europe

Published online by Cambridge University Press:  14 April 2009

M. G. Franco
Affiliation:
Institute of Zoology, University of Pavia, P. Botta 9, 27100 Pavia, Italy
P. G. Rubini
Affiliation:
Institute of Zoology, University of Pavia, P. Botta 9, 27100 Pavia, Italy
M. Vecchi
Affiliation:
Institute of Zoology, University of Pavia, P. Botta 9, 27100 Pavia, Italy

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The distribution of sex-determinants in field populations of Musca domestica domestica L. was studied in 62 samples of flies collected at 53 sites (animal farms) between 1975 and 1981 in an area stretching North–South from Denmark (+ Iceland) to Sicily.

Karyological observations and genetic analyses demonstrated the existence of three types of population along a latitudinal cline. Populations of Northern Europe were of the standard type (XX females and XY males) with the Y chromosome determining sex. Those of Central and Southern Italy from sites below 100 m.a.s.l. (metres above sea level) were autosomal (XX females and males), sex in them being determined by autosomal sex-determinants for both femaleness and maleness. In the large intermediate zone the populations were mixed and had several karyotypes in both sexes. In this zone an altitudinal gradient was also observed, with autosomal determinants less common at higher altitudes. Genetic tests showed, in the autosomal and in the mixed populations, the presence of two autosomal male factors: M III, the most common, on autosome III and M II, on autosome II.

The gradient in sex determinants found in flies of Western Europe appears to be a dynamic phenomenon of relatively recent origin. Both climatic influence and selective pressure with insecticides have probably contributed towards the micro-evolution of populations with different sex-determinants in the houseflies of the area studied.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1982

References

REFERENCES

Bull, J. J. & Charnov, E. L. (1977). Changes in the heterogametic mechanism of sex-determination. Heredity 39 (1), 114.Google Scholar
Franco, M. G., Lanna, M. T. & Milani, R. (1962). Eredità legata al sesso nella Musca domestica L. Atti Associazione Genetica Italiana 7, 198212.Google Scholar
Franco, M. G., Rubini, P. G. & Vecchi, M. (1979). Meccanismi di determinazione del sesso in popolazioni europee di Musca domestica L. Bollettino di Zoologia 46, 9798.Google Scholar
Hiroyoshi, T. (1961). The linkage map of the housefly, Musca domestica L. Genetics 46, 13731380.CrossRefGoogle Scholar
Hiroyoshi, T. (1964). Sex-limited inheritance and abnormal sex ratio in strains of the housefly. Genetics 50, 373385.CrossRefGoogle ScholarPubMed
*Hiroyoshi, T. & Fukumori, Y. (1977). On the IIIM-Type houseflies frequently appeared in Japan. Japanese Journal of Genetics 52, 443. (Abstract in Japanese.)Google Scholar
*Hiroyoshi, T. & Fukumori, Y. (1978). On the sex-determination in wild populations of the housefly. Japanese Journal of Genetics 53, 420421. (Abstract in Japanese.)Google Scholar
*Hiroyoshi, T. & Inoue, H. (1979). On the IM-chromosome of the housefly. Japanese Journal of Genetics 54, 434 (Abstract in Japanese.)Google Scholar
Kerr, R. W. (1960). Sex-limited DDT-resistance in housefly. Nature, Land. 185, 868.CrossRefGoogle Scholar
Kerr, R. W. (1961). Inheritance of DDT-resistance involving the Y-chromosome in the housefly (Musca domestica L.). Australian Journal of Biological Sciences 14, 605619.Google Scholar
Kerr, R. W. (1970). Inheritance of DDT resistance in a laboratory colony of the housefly, Musca domestica. Australian Journal of Biological Sciences 23, 377400.CrossRefGoogle Scholar
Keuneke, W. (1924). Über die Spermatogenese einiger Dipteren. Zeitschrift für Zellforschung und Gewebelehere 1, 257412.Google Scholar
McDonald, I. C., Overland, D. E., Leopold, R. A., Degrugillier, M. E., Morgan, P. B. & Hofmann, H. C. (1975). Genetics of House Flies. Variability studies with North Dakota, Texas, and Florida populations. Journal of Heredity 66, 137140.Google Scholar
McDonald, I. C., Evenson, P., Nickel, C. A. & Johnson, O. A. (1978). House fly genetics: isolation of a female determining factor on chromosome 4. Annals of the Entomological Society of America 71, 692694.CrossRefGoogle Scholar
Metz, C. W. (1916). Chromosome studies on the Diptera, II. The paired association of chromosomes in the Diptera, and its significance. Journal of experimental Zoology 21, no. 2, 213279.Google Scholar
Milani, R. (1956). Recenti sviluppi delle ricerche genetiche sulla mosca domestica. Bollettino di Zoologia 23, 749764.Google Scholar
Milani, R. (1961). Genetica della resistenza agli insetticidi. Atti VII Congresso S.I.G.A. 1960. Genetica Agraria 14, 234251.Google Scholar
Milani, R. (1962). Observations on intraspecific differentiation, genetic variability, sex-limited inheritance, DDT-resistance and aspects of sexual behaviour in Musca domestica L. Symposia Genetica et Biologica Italica 9, 312327.Google Scholar
Milani, R. (1964 a). Citologia della mosca domestica (Musca domestica L.). Quaderni de la Ricerca Scientifica 25, 111116.Google Scholar
Milani, R. (1964 b). Considerazioni sulla genecologia e notizie sulla distribuzione delle mosche DDT-resistenti nella Provincia di Latina. Lavori Società Italiana Biogeografia 7, 6677.Google Scholar
Milani, R. (1969). Le variazioni delle formule sessuali di Musca domestica L. come possibile esempio di coadattamenti genetici. Bollettino di Zoologia 36, no. 4, 372373.Google Scholar
Milani, R. (1971). Genetics of factors affecting fertility and of sex-ratio distorsions in the house fly. Sterility principle for insect control or eradication. In Proceedings of a Symposium,Athens,14–18 September 1970, pp. 381397. International Atomic Energy Agency Proceedings Series, Vienna.Google Scholar
Milani, R. & Franco, M. G. (1959 a). Fertilità, rapporto sessi e segregazione del mutante bwb in incroci tra ceppi geograficamente separati di Musca domestica L. Symposia Genetica et Biologica Italica 6, 249268.Google Scholar
Milani, R. & Franco, M. G. (1959 b). Comportamento ereditario della resistenza al DDT in incroci tra il ceppo Orlando-R e i ceppi kdr e kdr + di Musca domestica L. Symposia Genetica et Biologica Italica 6, 269303.Google Scholar
Milani, R., Rubini, P. G. & Franco, M. G. (1967). Sex determination in the housefly. Genetica Agraria 21, 385411.Google Scholar
Perje, A. M. (1948). Studies on the spermatogenesis in Musca domestica. Hereditas 34, 209232.Google Scholar
Ramade, F. (1961). Étude du développement post-embryonnaire du testicule et de la spermatogenèse chez l'asticot de Musca domestica L. Annales de l'Institut National Agronomique 47, 163. Paris.Google Scholar
Rubini, P. G. (1967). Ulteriori osservazioni sui determinanti sessuali di Musca domestica L. Genetica Agraria 21, 363384.Google Scholar
Rubini, P. G. & Palenzona, D. (1967). Response to selection for high number of heterochromosomes in Musca domestica L. Genetica Agraria 21, 101110.Google Scholar
Rubini, P. G. & Franco, M. G. (1968). Additional information on sex-determination in Musca domestica L. Atti Associazione Genetica Italiana 13, 114116.Google Scholar
Rubini, P. G. & Franco, M. G. (1972). Localization of the male determining factor M present in a strain (Lab.-l) of Musca domestica L. Genetica Agraria 26, I-II, 217232.Google Scholar
Rubini, R. G., Franco, M. G. & Vanossi Este, S. (1972). Polymorphisms for heterochromosomes and autosomal sex-determinants in Musca domestica L. Atti IX Congresso Italiano Entomologia, 341352.Google Scholar
Rubini, P. G., Van Heemert, C. & Franco, M. G. (1977). Rapporto sessi anomalo in una popolazione naturale di Musca domestica L. e sue basi genetiche. Genetica Agraria 31, I–II, 2138.Google Scholar
Rubini, P. G., Redi, C. A. & Franco, M. G. (1978). Richerche olfattometriche sul riconoscimento sessuale intraspecifico in Musca domestica L. Considerazioni sulle potenzialità del metodo del maschio sterile nel controllo di questo insetto. Bollettino Società Entomologica Italiana 110, 225241.Google Scholar
Rubini, P. G., Franco, M. G. & Vecchi, M. (1980). Distribuzione geografica dei determinanti sessuali in popolazioni europee di Musca domestica L. Atti Associazione Genetica Italiana 26, 253256.Google Scholar
Rubini, P. G., Vecchi, M. & Franco, M. G. (1980). Mitotic recombination in Musca domestica L. and its influence on mosaicism, gynandromorphism and recombination in males. Genetical Research 35, 121130.CrossRefGoogle Scholar
Rupeš, V. & Pinterová, J. (1975). Genetic analysis of resistance to DDT, Methoxychlor and Fenotrothion in two strains of housefly (Musca domestica). Entomologia experimentalis et applicata 18, 480491.CrossRefGoogle Scholar
Sacca', G. (1955). Reperto di ginandromorfi in Musca domestica L. (Diptera Muscidae). Rendiconti Istituto Superiore Sanità 18, 380383.Google Scholar
Sacca', G. (1967). Speciation in Musca. In Genetics of Insect Vectors of Disease (ed. Wright, J. W. & Pal, R.), pp. 385399. Amsterdam, London, New York: Elsevier.Google Scholar
Stevens, N. M. (1908). A study of the germ cells of certain Diptera, with reference to the heterochromosomes and the phenomena of synapsis. The Journal of Experimental Zoology 5, 359374.Google Scholar
Sullivan, R. L. (1958). Sex limitation of several loci in the housefly. In Proceedings of the Tenth International Congress of Genetics 2, pp. 282.Google Scholar
Sullivan, R. L. (1961). Linkage and sex-limitation of several loci in the housefly. Journal of Heredity 52, 282286.CrossRefGoogle ScholarPubMed
Tsukamoto, M. (1964). Methods for linkage-group determination of insecticide-resistance factors in the housefly. Botyu-Kagaku 29, 7689.Google Scholar
Tsukamoto, M., Baba, Y. & Hiraga, S. (1961). Mutations and linkage groups in Japanese strains of the housefly. Japanese Journal of Genetics 36, 168174.Google Scholar
Tsukamoto, M., Shono, T. & Horio, M. (1980). Autosomal sex-determining system of the housefly: discovery of the first-chromosomal male factor in Kitakysushu, Japan. Journal of University of Occupational and Environmental Health 2 (2), 235252.Google Scholar
Wagoner, D. E. (1969). Presence of male determining factors found on three autosomes in the housefly, Musca Domestica L. Nature 233, 187188.CrossRefGoogle Scholar