Skip to main content Accessibility help
×
Home
Hostname: page-component-cf9d5c678-h2mp8 Total loading time: 0.285 Render date: 2021-08-05T13:47:37.167Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Article contents

Mapping QTLs for traits measured as percentages

Published online by Cambridge University Press:  12 July 2004

MAO YONGCAI
Affiliation:
Department of Botany and Plant Sciences, University of California, Riverside, CA 92521-0124, USA
XU SHIZHONG
Affiliation:
Department of Botany and Plant Sciences, University of California, Riverside, CA 92521-0124, USA
Rights & Permissions[Opens in a new window]

Abstract

Many quantitative traits are measured as percentages. As a result, the assumption of a normal distribution for the residual errors of such percentage data is often violated. However, most quantitative trait locus (QTL) mapping procedures assume normality of the residuals. Therefore, proper data transformation is often recommended before statistical analysis is conducted. We propose the probit transformation to convert percentage data into variables with a normal distribution. The advantage of the probit transformation is that it can handle measurement errors with heterogeneous variance and correlation structure in a statistically sound manner. We compared the results of this data transformation with other transformations and found that this method can substantially increase the statistical power of QTL detection. We develop the QTL mapping procedure based on the maximum likelihood methodology implemented via the expectation-maximization algorithm. The efficacy of the new method is demonstrated using Monte Carlo simulation.

Type
Research Article
Copyright
2004 Cambridge University Press
You have Access

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Mapping QTLs for traits measured as percentages
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Mapping QTLs for traits measured as percentages
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Mapping QTLs for traits measured as percentages
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *