Hostname: page-component-7c8c6479df-nwzlb Total loading time: 0 Render date: 2024-03-29T15:46:58.471Z Has data issue: false hasContentIssue false

Localization of P elements, copy number regulation, and cytotype determination in Drosophila melanogaster

Published online by Cambridge University Press:  14 April 2009

C. Biémont
Affiliation:
Biometry-Genetics and Population Biology Laboratory, University Claude-Bernard, Lyon 1, 69622 Villeurbanne Cedex, France
S. Ronsseray
Affiliation:
Population Genetics Laboratory, Université P. et M. Curie, 2 Place Jussieu, 75005 Paris, France
D. Anxolabéhère
Affiliation:
Population Genetics Laboratory, Université P. et M. Curie, 2 Place Jussieu, 75005 Paris, France
H. Izaabel
Affiliation:
Population Genetics Laboratory, Université P. et M. Curie, 2 Place Jussieu, 75005 Paris, France
C. Gautier
Affiliation:
Biometry-Genetics and Population Biology Laboratory, University Claude-Bernard, Lyon 1, 69622 Villeurbanne Cedex, France
Rights & Permissions [Opens in a new window]

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Seventeen highly-inbred lines of Drosophila melanogaster extracted from an M′ strain (in the P/M system of hybrid dysgenesis) were studied for their cytotype and the number and chromosomal location of complete and defective P elements. While most lines were of M cytotype, three presented a P cytotype (the condition that represses P-element activity) and one was intermediate between M and P. All lines were found to possess K.P elements and only eight to bear full-sized P elements. Only the lines with full-sized P elements showed detectable changes in their P-insertion pattern over generations; their rates of gain and of loss of P-element sites were equal to 0·12 and 0·09 per genome, per generation, respectively. There was no correlation between these two rates within lines, suggesting independent transpositions and excisions in the inbred genomes. The results of both Southern blot analysis and in situ hybridization of probes made from left and right sides of the P element strongly suggested the presence of a putative complete P element in region 1A of the X chromosome in the three lines with a P cytotype; the absence of P copy in this 1A region in lines with an M cytotype, favours the hypothesis that the P element inserted in 1A could play a major role in the P-cytotype determination. Insertion of a defective 2 kb P element was also observed in region 93F in 9 of the 13 M lines. The regulation of the P-element copy number in our lines appeared not to be associated with the ratio of full-length and defective P elements.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1990

References

Ajioka, J. W. & Eanes, W. F. (1989). The accumulation of P-elements on the tip of the X chromosome in populations of Drosophila melanogaster. Genetical Research 53, 16.CrossRefGoogle ScholarPubMed
Anxolabéhère, D., Nouaud, D., Périquet, G. & Tchen, P. (1985). P-element distribution in Eurasian populations of Drosophila melanogaster: a genetic and molecular analysis. Proceedings of the National Academy of Sciences, USA 82, 54185422.Google Scholar
Anxolabéhère, D., Kidwell, M. G. & Périquet, G. (1988). Molecular characteristics of diverse populations are consistent with the hypothesis of a recent invasion of Drosophila melanogaster by mobile P elements. Molecular Biology and Evolution 5, 252269.Google ScholarPubMed
Arkhipova, I. R., Mazo, A. M., Cherkasova, V. A., Gorelova, T. V., Schuppe, N. G. & Ilyin, Y. V. (1986). The steps of reverse transcription of Drosophila mobile dispersed genetic elements and U3-R-U5 structure of their LTRs. Cell 44, 555563.CrossRefGoogle ScholarPubMed
Biémont, C. (1986). Polymorphism of the mdg-1 and I mobile elements in Drosophila melanogaster. Chromosoma 93, 393397.CrossRefGoogle Scholar
Biémont, C. & Aouar, A. (1987). Copy-number dependent transpositions and excisions of the mdg-1 mobile element in inbred lines of Drosophila melanogaster. Heredity 58, 3947.CrossRefGoogle Scholar
Biémont, C., Aouar, A. & Arnault, C. (1987). Genome reshuffling of the copia element in a Drosophila melanogaster inbred line. Nature 329, 742744.CrossRefGoogle Scholar
Biémont, C. & Gautier, C. (1988). Localisation polymorphism of mdg-1, copia, I and P mobile elements in genomes of Drosophila melanogaster, from data of inbred lines. Heredity 60, 335346.Google Scholar
Biémont, C., Gautier, C. & Heizmann, A. (1988). Independent regulation of mobile element copy number in Drosophila melanogaster inbred lines. Chromosoma 96, 291294.CrossRefGoogle Scholar
Bingham, P. M., Kidwell, M. G. & Rubin, G. M. (1983). The molecular basis of P–M hybrid dysgenesis: the role of the P element, a P-strain specific transposon family. Cell 29, 9951004.CrossRefGoogle Scholar
Black, D. M., Jackson, M. S., Kidwell, M. G. & Dover, G. A. (1987). KP elements repress P-induced hybrid dysgenesis in Drosophila melanogaster. EMBO Journal 6, 41254135.CrossRefGoogle ScholarPubMed
Boussy, I. A., Healy, M. J., Oakeshott, J. G. & Kidwell, M. G. (1988). Molecular analysis of the P–M gonadal dysgenesis cline in Eastern Australian Drosophila melanogaster. Genetics 119, 889902.CrossRefGoogle Scholar
Brégliano, J. C. & Kidwell, M. G. (1983). Hybrid dysgenesis determinants. In Mobile Genetic Elements (ed. Shapiro, J. A.). Academic Press.Google Scholar
Di Nocera, P. P. & Casari, G. (1987). Related polypeptides are encoded by Drosophila F elements, I factors, and mammalian L1 sequences. Proceedings of the National Academy of Sciences, USA 84, 58435847.CrossRefGoogle ScholarPubMed
Eggleston, W. B., Johnson-Schlitz, D. M. & Engels, W. R. (1988). P–M hybrid dysgenesis does not mobilize other transposable element families in Drosophila melanogaster. Nature 331, 368370.CrossRefGoogle ScholarPubMed
Emori, Y., Shiba, T., Kanaya, S., Inouye, S., Yuki, S. & Saigo, K. (1985). The nucleotide sequences of Copia-related RNA in Drosophila virus-like particles. Nature 315, 773776.CrossRefGoogle ScholarPubMed
Engels, W. R. (1979). Hybrid dysgenesis in Drosophila melanogaster: rules of inheritance of female sterility. Genetical Research 33, 219236.Google Scholar
Engels, W. R. (1983). The P family of transposable elements in Drosophila. Annual Review of Genetics 17, 315344.CrossRefGoogle Scholar
Engels, W. R. (1989). P elements in Drosophila. In Mobile DNA (ed. Berg, D. and Howe, M.). ASM Publications.Google Scholar
Engels, W. R. & Preston, C. R. (1979). Hybrid dysgenesis in Drosophila melanogaster: the biology of male and female sterility. Genetics 92, 161175.CrossRefGoogle Scholar
Fawcett, D. H., Lister, C. K., Kellet, E. & Finnegan, D. J. (1986). Transposable elements controlling I-R hybrid dysgenesis in D. melanogaster are similar to mammalian LINEs. Cell 47, 10071015.CrossRefGoogle Scholar
Gerasimova, T. I., Mizrokhi, L. J. & Georgiev, G. P. (1984). Transposition bursts in genetically unstable Drosophila melanogaster. Nature 309, 714716.CrossRefGoogle Scholar
Ilyin, Y. V., Chmeliauskaite, V. G. & Georgiev, G. P. (1980). Double-stranded sequences in RNA of Drosophila melanogaster: relation to mobile dispersed genes. Nucleic Acid Research 8, 34393457.CrossRefGoogle ScholarPubMed
Jackson, M. S., Black, D. M. & Dover, G. A. (1988). Amplification of KP elements associated with the expression of hybrid dysgenesis in Drosophila melanogaster. Genetics 120, 10031013.CrossRefGoogle Scholar
Junakovic, N., Cavena, R. & Ballario, P. (1984). Genomic distribution of copia-like elements in laboratory stocks of Drosophila melanogaster. Chromosoma 90, 378382.CrossRefGoogle Scholar
Kidwell, M. G. (1981). Hybrid dysgenesis in Drosophila melanogaster: the genetics of cytotype determination in a neutral strain. Genetics 98, 275290.CrossRefGoogle Scholar
Kidwell, M. G. (1983). Evolution of hybrid dysgenesis determinants in Drosophila melanogaster. Proceedings of the National Academy of Sciences, USA 80, 16551659.CrossRefGoogle ScholarPubMed
Kidwell, M. G. (1985). Hybrid dysgenesis in Drosophila melanogaster: nature and inheritance of P-element regulation. Genetics 111, 337350.CrossRefGoogle ScholarPubMed
Kidwell, M. G., Kidwell, J. F. & Sved, J. A. (1977). Hybrid dysgenesis in Drosophila melanogaster: a syndrome of aberrant traits including mutation, sterility, and male recombination. Genetics 36, 813833.CrossRefGoogle Scholar
Kidwell, M. G., Kimura, K. & Black, D. M. (1988). Evolution of hybrid dysgenesis potential following P element contamination in Drosophila melanogaster. Genetics 119, 815828.CrossRefGoogle ScholarPubMed
Kidwell, M. G. & Novy, J. B. (1979). Hybrid dysgenesis in Drosophila melanogaster: sterility resulting from gonadal dysgenesis in the P–M system. Genetics 92, 11271140.CrossRefGoogle ScholarPubMed
Laski, F. A., Rio, D. C. & Rubin, G. M. (1986). The tissue specificity of Drosophila P element transposition is regulated at the level of mRNA splicing. Cell 44, 719.Google Scholar
Leigh Brown, A. J. & Moss, J. K. (1987). Transposition of the I element and copia in a natural population of Drosophila melanogaser. Genetical Research 49, 121128.CrossRefGoogle Scholar
Nitasaka, E., Mukaï, T. & Yamazaki, T. (1987). Repressor of P elements in Drosophila melanogaster: cytotype determination by a defective P element carrying only open reading frames 0 through 2. Proceedings of the National Academy of Sciences, USA 84, 76057608.CrossRefGoogle Scholar
O'Hare, K. & Rubin, G. M. (1983). Structures of P transposable elements and their sites of insertion and excision in the Drosophila melanogaster genome. Cell 34, 2535.CrossRefGoogle ScholarPubMed
Preston, C. R. & Engels, W. R. (1984). Movement of P elements within a P strain. Drosophila Information Service 60, 169170.Google Scholar
Robertson, H. M. & Engels, W. R. (1989). Modified P elements that mimic the P cytotype in Drosophila melanogaster. Genetics 123, 815824.CrossRefGoogle Scholar
Ronsseray, S. & Anxolabéhère, D. (1986). Chromosomal distribution of P and I transposable elements in a natural population of Drosophila melanogaster. Chromosoma 94, 433440.CrossRefGoogle Scholar
Ronsseray, S., Lehmann, M. & Anxolabéhère, D. (1989). Distribution of P and I mobile elements copy number in Drosophila melanogaster populations. Chromosoma 98, 207214.CrossRefGoogle Scholar
Sakoyama, Y., Todo, T., Ishiwa-Chigusa, S., Honjo, T. & Kondo, S. (1985). Structures of defective P transposable elements prevalent in natural Q and Q-derived M strains of Drosophila melanogaster. Proceedings of the National Academy of Sciences USA 82, 62366239.Google Scholar
Simmons, M. J. & Buchold, L. M. (1985). Transposase titration in Drosophila melanogaster: a model for cytotype in the P–M system of hybrid dysgenesis. Proceedings of the National Academy of Sciences, USA 82, 81198123.CrossRefGoogle Scholar
Simmons, M. J., Raymond, J. D., Boedigheimer, M. J. & Zunt, J. R. (1987). The influence of nonautonomous P elements on hybrid dysgenesis in Drosophila melanogaster. Genetics 117, 671685.CrossRefGoogle ScholarPubMed
Spradling, A. C. & Rubin, G. M. (1982). Transposition of cloned P elements into Drosophila germ line chromosomes. Science 218, 341347.CrossRefGoogle ScholarPubMed
Streck, R. D., MacGaffey, J. E. & Beckendorf, S. K. (1986). The structure of hobo transposable elements and their insertion sites. EMBO Journal 5, 36153623.CrossRefGoogle ScholarPubMed
Tautz, D. & Renz, M. (1983). An optimized freeze-squeeze method for the recovery of DNA from agarose gels. Analytical Biochemistry 132, 1419.CrossRefGoogle ScholarPubMed
Tchurikov, N. A., Ilyin, Y. V., Skryabin, K. G., Ananiev, E. V., Bayev, A. A., Krayev, A. S., Zelentsova, E. S., Kulguskin, V. V., Lyubomirskaya, N. V. & Georgiev, G. P. (1981). General properties of mobile dispersed genetic elements in Drosophila. Cold Spring Harbor Symposium on quantitative Biology 45, 655665.CrossRefGoogle ScholarPubMed
Todo, T., Sakoyama, Y., Chigusa, S. I., Funukaga, A., Honjo, T. & Kondo, S. (1984). Polymorphism in distribution and structure of P elements in natural populations of Drosophila melanogaster in and around Japan. Japanese Journal of Genetics 59, 441451.Google Scholar
Woodruff, R. C., Blount, J. L. & Thompson, J. N. Jr (1987). Hybrid dysgenesis in Drosophila melanogaster is not a general release mechanism for DNA transpositions. Science 237, 12061207.Google Scholar