Hostname: page-component-7479d7b7d-68ccn Total loading time: 0 Render date: 2024-07-13T17:43:59.988Z Has data issue: false hasContentIssue false

Further observation of paternal transmission of Drosophila mitochondrial DNA by PCR selective amplification method

Published online by Cambridge University Press:  14 April 2009

Rumi Kondo*
Department of Biology, Ohcanomizu University, 2-1-1 Otsuka, Bunkyo-ku, Tokyo 112, Japan
Etsuko T. Matsuura
Department of Biology, Ohcanomizu University, 2-1-1 Otsuka, Bunkyo-ku, Tokyo 112, Japan
Sadao I. Chigusa
Department of Biology, Ohcanomizu University, 2-1-1 Otsuka, Bunkyo-ku, Tokyo 112, Japan
Corresponding author.


Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

By designing 3′ ends of primers in PCR (polymerase chain reaction), a specific DNA fragment was selectively amplified in the presence of a 103-fold excess of highly homologous (sequence difference ca. 2 %) opponent DNA. This technique was applied in detecting paternal leakage of mitochondrial DNA (mtDNA) in intraspecific crosses of Drosophila simulans and interspecific crosses of Drosophila simulans and Drosophila mauritiana. The mtDNA types of their progeny were analysed by selective amplification of the paternal mtDNA fragment possessing a polymorphic restriction site and detecting its cleaved fragments. Paternal mtDNA was detected in the progeny of 14 out of 16 crosses. The present result indicates small but frequent inheritance of sperm mtDNA in Drosophila, which is supportive to our previous finding.

Research Article
Copyright © Cambridge University Press 1992


Birky, C. W. Jr (1983). Relaxed cellular controls and organelle heredity. Science 222, 468475.CrossRefGoogle ScholarPubMed
Chapman, R. W., Stephens, J. C., Lansman, R. A. & Avise, J. C. (1982). Models of mitochondrial DNA transmission genetics and evolution in higher eucaryotes. Genetical Research 40, 4157.CrossRefGoogle ScholarPubMed
Clary, D. O. & Wolstenholme, D. R. (1985). The mitochondrial DNA molecule of Drosophila yakuba: nucleotide sequence, gene organization and genetic code. Journal of Molecular Evolution 22, 252271.CrossRefGoogle ScholarPubMed
Gibbs, R. A., Nguyen, P.-N & Caskey, C. T. (1989). Detection of single DNA base differences by competitive oligonucleotide priming. Nucleic Acids Research 17, 2437.CrossRefGoogle ScholarPubMed
Gyllensten, U., Wharton, D., Josefsson, A. & Wilson, A. C. (1991). Paternal inheritance of mitochondrial DNA in mice. Nature 352, 255257.CrossRefGoogle ScholarPubMed
Hoeh, W. R., Blakley, K. H. & Brown, W. M. (1991). Heteroplasmy suggests limited biparental inheritance of Mytilus mitochondrial DNA. Science 251, 14881490.CrossRefGoogle ScholarPubMed
Innis, M. A. & Gelfand, D. H. (1990). Optimization of PCRs. In PCR protocols, (ed. Innis, M. A., Gelfand, D. H., Sninsky, J. J. & White, T. J.), pp. 312. San Diego: Academic Press.Google Scholar
Kondo, R., Satta, Y., Matsuura, E. T., Ishiwa, H., Takahata, N. & Chigusa, S. I. (1990). Incomplete maternal transmission of mitochondrial DNA in Drosophila. Genetics 126, 657663.CrossRefGoogle ScholarPubMed
Kaneko, S., Miller, R. H., Feinstone, S. M., Unoura, M., Kobayashi, K., Hattori, N. & Purcell, R. H. (1989). Detection of serum hepatitis B virus DNA in patients with chronic hepatitis using the polymerase chain reaction assay. Proceedings of the National Academy of Sciences, USA 86, 312316.CrossRefGoogle ScholarPubMed
Matsuura, E. T., Fukuda, H. & Chigusa, S. I. (1991 a). Mitochondrial DNA heteroplasmy maintained in natural populations of Drosophila simulans in Réunion. Genetical Research 57, 123126.CrossRefGoogle ScholarPubMed
Matsuura, E. T., Niki, Y. & Chigusa, S. I. (1991 b). Selective transmission of mitochondrial DNA in heteroplasmic lines for intra-and interspecific combinations in Drosophila melanogaster. The Japanese Journal of Genetics 66, 197207.CrossRefGoogle ScholarPubMed
Mirfakhrai, M., Tanaka, Y. & Yanagisawa, K. (1990). Evidence for mitochondrial DNA polymorphism and uniparental inheritance in the cellular slime mould Polysphondylium pallidum: effect of intraspecies mating on mitochondrial DNA transmission. Genetics 124, 607613.CrossRefGoogle Scholar
Neale, D. B., Marshall, K. A. & Sederoff, R. R. (1990). Chloroplast and mitochondrial DNA are paternally inherited in Sequoia sempervirens D. Don Endl. Proceedings of the National Academy of Sciences, USA 86, 93479349.CrossRefGoogle Scholar
Saiki, R. K., Scharf, S., Faloona, F., Mullis, K. B., Horn, G. T., Erlich, H. A. & Arnheim, N. (1985). Enzymatic amplification of β-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Science 230, 13501354.CrossRefGoogle ScholarPubMed
Satta, Y. & Takahata, N. (1990). Evolution of Drosophila mitochondrial DNA and the history of the melanogaster subgroup. Proceedings of the National Academy of Sciences, USA 87, 95589562.CrossRefGoogle ScholarPubMed
Solignac, M., Monnerot, M. & Mounolou, J.-C. (1986). Mitochondrial DNA evolution in the melanogaster species subgroup of Drosophila. Journal of Molecular Evolution 23, 3139.CrossRefGoogle ScholarPubMed
Sommer, R. & Tautz, D. (1989). Minimal homology requirements for PCR primers. Nucleic Acids Research 17, 6749.CrossRefGoogle ScholarPubMed
Takahata, N. & Maruyama, T. (1981). A mathematical model of extranuclear genes and the genetic variability maintained in the finite population. Genetical Research 37, 291302.CrossRefGoogle Scholar
Wu, D. Y., Ugozzoli, L., Pal, B. K. & Wallace, R. B. (1989) Allele-specific enzymatic amplification of β-globin genomic DNA for diagnosis of sickle cell anemia. Proceedings of the National Academy of Sciences, USA 86, 2757.CrossRefGoogle ScholarPubMed