Hostname: page-component-77c89778f8-rkxrd Total loading time: 0 Render date: 2024-07-17T06:02:38.849Z Has data issue: false hasContentIssue false

The epistasis of Adh and Gpdh allozymes and variation in the ethanol tolerance of Drosophila melanogaster larvae

Published online by Cambridge University Press:  14 April 2009

Stephen W. McKechnie*
Affiliation:
Department of Genetics, Monash University, Clayton 3168, Australia
Billy W. Geer
Affiliation:
Department of Biology, Knox College, Galesburg, Illinois 61401, USA
*
* Corresponding author.

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The role of epistatic interaction of allozymes in the determination of variation in larval ethanol tolerance of Drosophila melanogaster was examined. Isofemale lines from the Tahbilk Winery were made homozygous for different common alleles of alcohol dehydrogenase (Adh) and sn-glycerol-3-phosphate dehydrogenase (Gpdh). When fed 6% ethanol, all the lines had reduced survival and, in the survivors, reduced body weight and lengthened development time. A strong positive correlation between tolerance and development time suggested that alleles responsible for slowing development on ethanol also increased ethanol tolerance. Analysis of larval ethanol tolerance over four generations showed that larvae of the AdhffGpdhff, and AdhssGpdhss allelic combinations were more tolerant than larvae with the other combinations. However, these genotypes were not associated with the slowing of development nor the weight loss on ethanol. Hence, larvae with certain combinations of Adh and Gpdh allozymes may have a greater capacity to metabolize ethanol and be more tolerant to its toxic effects.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1988

References

Briscoe, D. A., Robertson, A. & Malpica, J. (1975). Dominance at the Adh locus in response of adult Drosophila melanogaster to environmental alcohol. Nature 255, 148149.CrossRefGoogle ScholarPubMed
Cavener, D. R. & Clegg, M. T. (1981). Multigenic response to ethanol in Drosophila melanogaster. Evolution 35, 110.CrossRefGoogle ScholarPubMed
David, J. R. & Bocquet, C. (1975). Similarities and differences in the latitudinal adaptation of two Drosophila sibling species. Nature 257, 581590.CrossRefGoogle ScholarPubMed
David, J. R., Bocquet, C., Arens, M. & Fouillet, P. (1976). Biological role of alcohol dehydrogenase in the tolerance of Drosophila melanogaster to aliphatic alcohols: utilisation of an ADH-null mutant. Biochemical Genetics 14, 989997.CrossRefGoogle ScholarPubMed
David, J. R. & van Herrewege, J. (1983). Adaptation to alcoholic fermentation in Drosophila species: relationship between alcohol tolerance and larval habitat. Comparative Biochemistry and Physiology 74A, 283288.CrossRefGoogle Scholar
Dorado, G. & Barbancho, M. (1984). Differential responses in Drosophila melanogaster to environmental ethanol: modification of fitness components at the Adh locus. Heredity 53, 309320.CrossRefGoogle Scholar
Dykhuizen, D. E., Dean, A.M. & Hartl, D. L. (1987). Metabolic flux and fitness. Genetics 115, 2531.CrossRefGoogle ScholarPubMed
Easteal, S. & Oakeshott, J. G. (1985). Estimating divergence times of Drosophila species from DNA sequence comparison. Molecular Biology and Evolution 2, 8791.Google Scholar
Geer, B. W., Langevin, M. L. & McKechnie, S. W. (1985). Dietary ethanol and lipid synthesis in Drosophila melanogaster. Biochemical Genetics 23, 607622.CrossRefGoogle ScholarPubMed
Geer, B. W., McKechnie, S. W., Bentley, M. M., Oakeshott, J. G., Quinn, E. M. & Langevin, M. L. (1988). Induction of alcohol dehydrogenase by ethanol in Drosophila melanogaster. Journal of Nutrition 118, 398407.CrossRefGoogle ScholarPubMed
Geer, B. W., McKechnie, S. W. & Langevin, M. L. (1983). Regulation of sn-glycerol-3-phosphate dehydrogenase in Drosophila melanogaster larvae by dietary ethanol and sucrose. Journal of Nutrition 113, 16321642.CrossRefGoogle ScholarPubMed
Gibson, J. B., May, T. W. & Wilks, A. V. (1981). Genetic variation at the alcohol dehydrogenase locus in Drosophila melanogaster in relation to environmental variation: ethanol levels in breeding sites and allozyme frequencies. Oecologia (Berlin) 51, 191198.CrossRefGoogle ScholarPubMed
Heinstra, P. W. H., Scharloo, W. & Thorig, G. E. W. (1987). Physiological significance of the alcohol dehydrogenase polymorphism in larvae of Drosophila. Genetics 117, 7584.CrossRefGoogle ScholarPubMed
Inoue, Y. (1979). The fate of polymorphic inversions of Drosophila melanogaster transferred to laboratory conditions. Japanese Journal of Genetics 54, 8396.Google Scholar
Kacser, H. & Burns, J. A. (1981). The molecular basis of dominance. Genetics 97, 639666.CrossRefGoogle ScholarPubMed
Koehn, R. K., Zera, A. J. & Hall, J. G. (1983). Enzyme polymorphism and natural selection. In Evolution of Genes and Proteins (ed. Nei, M. and Koehn, R. K.), pp. 115136. Sinauer Associates, Sunderland, Massachusetts.Google Scholar
Knibb, W. R., Oakeshott, J. G. & Gibson, J. B. (1981). Chromosome inversion polymorphisms in Drosophila melanogaster. I. Latitudinal clines and associations between inversions in Australasian populations. Genetics 98, 833847.CrossRefGoogle ScholarPubMed
McKechnie, S. W. & Geer, B. W. (1984). Regulation of alcohol dehydrogenase in Drosophila melanogaster by dietary alcohol and carbohydrate. Insect Biochemistry 14, 231242.CrossRefGoogle Scholar
McKechnie, S. W. & Geer, B. W. (1986). Sn-Glycerol-3-phosphate oxidase and alcohol tolerance in Drosophila melanogaster larvae. Biochemical Genetics 24, 859872.CrossRefGoogle ScholarPubMed
McKechnie, S. W. & Morgan, P. (1982). Alcohol dehydrogenase polymorphism of Drosophila melanogaster: aspects of alcohol and temperature variation in the larval environment. Australian Journal of Biological Science 35, 8593.CrossRefGoogle Scholar
McKenzie, J. A. & McKechnie, S. W. (1978). Ethanol tolerance and the Adh polymorphism in a natural population of Drosophila melanogaster. Nature 272, 7576.CrossRefGoogle Scholar
McKenzie, J. A. & McKechnie, S. W. (1979). A comparative study of resource utilization in natural populations of Drosophila melanogaster and Drosophila simulans. Oecologia (Berlin) 40, 299309.CrossRefGoogle Scholar
McKenzie, J. A. & Parsons, P. A. (1974). Microdifferentiation in a natural population of Drosophila melanogaster to alcohol in the environment. Genetics 77, 385394.CrossRefGoogle Scholar
Middleton, R. J. & Kacser, H. (1983). Enzyme variation, metabolic flux and fitness: alcohol dehydrogenase in Drosophila melanogaster. Genetics 105, 633650.CrossRefGoogle ScholarPubMed
Oakeshott, J. G., May, T. W., Gibson, J. B. & Willcocks, D. A. (1982). Resource partitioning in five domestic Drosophila species and its relationship to ethanol metabolism. Australian Journal of Zoology 30, 547556.CrossRefGoogle Scholar
O'Brien, S. J. & MacIntyre, R. J. (1972). The α-glycero-phosphate cycle in Drosophila melanogaster. I. Biochemical and developmental aspects. Biochemical Genetics 7, 141161.CrossRefGoogle Scholar
Sanchez, J. A. & Rubio, J. (1986). Evolution du polymorphisme enzymatique dans des populations expérimentales de Drosophila melanogaster. III. Déséquilibre de linkage entre les locus Adh et α-Gpdh. Genetica 70, 153160.CrossRefGoogle Scholar
van Delden, W. (1984). The alcohol dehydrogenase polymorphism in Drosophila melanogaster, facts and problems. In Population Biology and Evolution (ed. Wohrmann, K. and Loeschcke, V.), pp. 127142. Springer Verlag, Berlin Heidelberg.CrossRefGoogle Scholar
van Herrewege, J. & David, J. R. (1980). Alcohol tolerance and alcohol utilization in Drosophila: partial independence of two adaptive traits. Heredity 44, 229235.CrossRefGoogle ScholarPubMed
Wilks, A. V., Gibson, J. B., Oakeshott, J. G. & Chambers, G. K. (1980). An electrophoretically cryptic alcohol dehydrogenase variant in Drosophila melanogaster. II. Post-electrophoresis heat-treatment screening of natural populations. Australian Journal of Biological Science 33, 575585.CrossRefGoogle Scholar