Hostname: page-component-8448b6f56d-jr42d Total loading time: 0 Render date: 2024-04-25T05:26:50.143Z Has data issue: false hasContentIssue false

Characterization of third chromosome dominant α-methyl dopa resistant mutants (Tcr) and their interactions with l(2)amd α-methyl dopa hypersensitive alleles in Drosophila melanogaster

Published online by Cambridge University Press:  14 April 2009

Clifton P. Bishop*
Affiliation:
Department of Biology, University of Virginia, Charlottesville, Virginia 22901, USA
Allen F. Sherald
Affiliation:
Department of Biology, George Mason University, Fairfax, Virginia 22030, USA
Theodore R. F. Wright
Affiliation:
Department of Biology, University of Virginia, Charlottesville, Virginia 22901, USA
*
* To whom correspondence should be addressed at: Department of Biology, Clarkson University, Potsdam, New York 13676 U.S.A.
Rights & Permissions [Opens in a new window]

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In Drosophila melanogaster two alleles at the Third chromosome resistance locus (Tcr; 3–39·6) were isolated in a screen of EMS mutagenized third chromosomes for dominant resistance to dietary α-methyl dopa, α-MD, a structural analogue of DOPA. Both alleles of Tcr are recessive lethals exhibiting partial complementation. Almost half (48·3%) of the Tcr40 / Tcr45 heterozygotes die as embryos but some survive past adult eclosion. Both the embryonic lethal phenotype and the adult phenotype suggest that Tcr is involved in cuticle synthesis. Tcr mutants suppress the lethality of partially complementing alleles at the α-MD hypersensitive locus, l(2)amd. The viability of Tcr40 / Tcr45, however, is not increased by the presence of a l(2)amd allele. The possibility that the Tcr and l(2)amd mutations reveal a catecholamine metabolic pathway involved in cuticle structure is discussed.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1989

References

Black, B. C. & Smarrelli, J. Jr (1986). A kinetic analysis of Drosophila melanogaster Dopa decarboxylase. Biochimica et Biophysica Acta 870, 3140.CrossRefGoogle ScholarPubMed
Black, B. C., Pentz, E. S. & Wright, T. R. F. (1987). The alpha methyl dopa hypersensitive gene, l(2)amd, and two adjacent genes in Drosophila melanogaster: Physical location and direct effects of amd on catecholamine metabolism. Molecular and General Genetics 209, 306312.CrossRefGoogle Scholar
Brunet, P. C. J. (1980). The metabolism of the aromatic amino acids involved in the cross-linking of insect cuticle. Insect Biochemistry 10, 467500.CrossRefGoogle Scholar
Clark, W. C., Pass, P. S., Benkataraman, B. & Hodgetts, R. B. (1978). Dopa decarboxylase from Drosophila melanogaster: Purification, characterization and an analysis of mutants. Molecular and General Genetics 162, 287297.CrossRefGoogle Scholar
Eveleth, D. D. & Marsh, J. L. (1986). Evidence for evolutionary duplication of genes in the dopa decarboxylase region of Drosophila. Genetics 114, 469483.CrossRefGoogle ScholarPubMed
Eveleth, D. D., Gietz, R. D., Spencer, C. A., Nargang, F. E., Hodgetts, R. B. & Marsh, J. L. (1986). Sequence and structure of the dopa decarboxylase gene of Drosophila: Evidence for novel RNA splicing variants. EMBO J. 5, 26632672.CrossRefGoogle ScholarPubMed
Hopkins, T. L., Morgan, T. D., Aso, Y. & Kramer, K. J. (1982). N-β-alanyldopamine: major role in insect cuticle tanning. Science 217, 364366.CrossRefGoogle ScholarPubMed
Jenkins, J. B. (1967). Mutagenesis of a complex locus in Drosophila with a monofunctional alkylating agent, ethylmethanesulfonate. Genetics 57, 783793.CrossRefGoogle Scholar
Karlson, P. & Sekeris, C. E. (1976). Control of tyrosine metabolism and cuticle sclerotization by ecdysone. In: The Insect Integument (ed. Hepburn, H. R.), pp. 145156. Elsevier: Amsterdam.Google Scholar
Lewis, E. B. & Bacher, F. (1968). Method of feeding ethyl methanesulfonate (EMS) to Drosophila males. Drosophila Information Service 43, 193.Google Scholar
Lindlsey, D. L. & Grell, E. H. (1968). Genetic variations of Drosophila melanogaster. Carnegie Institution of Washington Publication 627.Google Scholar
Marsh, J. L. & Wright, T. R. F. (1979). Control of dopa decarboxylase expression during development in Drosophila. In: Eukaryotic Gene Regulation, ICN-UCLA Symposia on Molecular and Cell Biology, vol 14 (ed. Axel, R., Maniatis, T. and Fox, C. F.), pp. 183194. New York: Academic Press.Google Scholar
Marsh, J. L. & Wright, T. R. F. (1986). Evidence for regulatory variants of the dopa decarboxylase and alpha-methyl dopa hypersensitive loci in Drosophila. Genetics 112, 249265.CrossRefGoogle ScholarPubMed
Marsh, J. L., Erfle, M. P. & Leeds, C. A. (1986). Molecular localization, developmental expression and nucleotide sequence of the alpha methyldopa hypersensitive gene of Drosophila. Genetics 114, 453467.CrossRefGoogle ScholarPubMed
Sparrow, J. C. & Wright, T. R. F. (1974). The selection for mutants in Drosophila melanogaster hypersensitive to α-methyl dopa, a dopa decarboxylase inhibitor. Molecular and General Genetics 130, 127141.CrossRefGoogle ScholarPubMed
Turnbull, I. F. & Howells, A. J. (1980). Larvicidal activity of inhibitors of DOPA decarboxylase on the Australian sheep blowfly, Lucilla cuprina. Australian Journal of Biological Sciences 33, 169181.CrossRefGoogle Scholar
Turnbull, I. F., Pyliotis, N. A. & Howells, A. J. (1980). The effects of dopa decarboxylase inhibitors on the permeability and ultrastructre of the larval cuticle of the Australian sheep blow-fly, Lucilla cuprina. Journal of Insect Physiology 26, 525532.CrossRefGoogle Scholar
Wright, T. R. F. (1977). The genetics of dopa decarboxylase and α-methyl dopa sensitivity in Drosophila melanogaster. American Zoologist 17, 707721.CrossRefGoogle Scholar
Wright, T. R. F. (1987). The genetics of biogenic amine metabolism, sclerotization, and melanization in Drosophila melanogaster. Advances in Genetics 24, 127222.CrossRefGoogle ScholarPubMed
Wright, T. R. F., Bewley, G. C. & Sherald, A. F. (1976). The genetics of dopa decarboxylase in Drosophila melanogaster. II. Isolation and characterization of dopa-decarboxylase-deficient mutants and their relationship to the a-methyl-dopa-hypersensitive mutants. Genetics 84, 287310.CrossRefGoogle Scholar
Wright, T. R. F., Beerman, W., Marsh, J. L., Bishop, C. P., Steward, R., Black, B. C., Tomsett, A. D. & Wright, E. Y. (1981). The genetics of dopa decarboxylase in Drosophila melanogaster. IV. The genetics and cytology of the 37B10–37D1 region. Chromosoma 83, 4558.CrossRefGoogle ScholarPubMed
Wright, T. R. F., Black, B., Bishop, C. P., Marsh, J., Pentz, E. S., Steward, R. & Wright, E. Y. (1982). The genetics of dopa decarboxylase in Drosophila melanogaster. V. Ddc and l(2)amd alleles: isolation, characterization and intragenic complementation. Molecular and General Genetics 188, 1826.CrossRefGoogle Scholar