Hostname: page-component-8448b6f56d-sxzjt Total loading time: 0 Render date: 2024-04-19T07:58:57.962Z Has data issue: false hasContentIssue false

An additional type of male sterility and inherited urinary obstruction in mice with the t-haplotype th7

Published online by Cambridge University Press:  14 April 2009

Mary F. Lyon
Affiliation:
Mammalian Genetics Unit, Medical Research Council, Harwell, Didcot, Oxon OX11 ORD, UK
Rights & Permissions [Opens in a new window]

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The t-complex on mouse chromosome 17 results in transmission ratio distortion in males heterozygous for complete haplotypes, and sterility in those homozygous for semi-lethal or doubly heterozygous for complementing lethal haplotypes. This sterility is due to inability of spermatozoa to fertilize. The haplotype th7 is an unusual laboratory-derived haplotype, postulated to carry a small duplication of t chromatin. Males heterozygous for th7 show a new form of sterility, apparently due to failure to form copulation plugs during mating. This is accompanied by a strong propensity to acute urinary obstruction. It is suggested that both the failure to form copulation plugs and the urinary obstruction are due to some abnormality in function of the accessory sex glands, and are the result of incorrect dosage of a gene in the postulated duplication. The symbol Msu for male sterility and urinary obstruction is suggested for the locus concerned. Previously a recessive form of abnormal behaviour had also been attributed to this duplication.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1996

References

Bendele, A. M., & Carlton, W. W., (1986). Incidence of obstructive uropathy in male B6C3F1 mice on a 24-month carcinogenicity study and its apparent prevention by ochratoxin A. Laboratory Animal Science 36, 282285.Google ScholarPubMed
Bennett, W. I., Gall, A. M., Southard, J. L., & Sidman, R. L., (1971). Abnormal spermiogenesis in quaking, a myelin deficient mutant mouse. Biology of Reproduction 5, 3058.CrossRefGoogle ScholarPubMed
Bullard, D. C., & Schimenti, J. C., (1990). Molecular cloning and genetic mapping of the t-complex responder candidate gene family. Genetics 124, 957966.CrossRefGoogle ScholarPubMed
Bullard, D. C., & Schimenti, J. C., (1991). Molecular structure of Tcp-10 genes from the t complex responder locus. Mammalian Genome 1, 228234.CrossRefGoogle ScholarPubMed
Cebra-Thomas, J. A., Decker, C. L., Snyder, L. C., Pilder, S. H., & Silver, L. M., (1991). Allele- and haploid-specific product generated by alternative splicing from a mouse t complex responder locus candidate. Nature 349, 239241.CrossRefGoogle Scholar
Forejt, J., & Ivanyi, P., (1975). Genetic studies on male sterility of hybrids between laboratory and wild mice (Mus musculus L.). Genetical Research 24, 189206.CrossRefGoogle Scholar
Forejt, J., Vincek, V., Klein, J., Lehrach, H., & Loudova-Mickova, M., (1991). Genetic mapping of the t-complex region on mouse chromosome 17 including the Hybrid sterility-1 gene. Mammalian Genome 1, 8491.CrossRefGoogle ScholarPubMed
Hammer, M. F., Schimenti, J., & Silver, L. M., (1989). Evolution of mouse chromosome 17 and the origin of inversions associated with t haplotypes. Proceedings of the National Academy of Sciences, USA 86, 32613265.CrossRefGoogle ScholarPubMed
Herrmann, B. G., Barlow, D. P., & Lehrach, H., (1987). A large inverted duplication allows homologous recombination between chromosomes heterozygous for the proximal t-complex inversion. Cell 48, 813825.CrossRefGoogle ScholarPubMed
Howard, C. A., Gummere, G. R., Lyon, M. F., Bennett, D., & Artzt, K., (1990). Genetic and molecular analysis of the proximal region of the mouse t-complex using new molecular probes and partial t-haplotypes. Genetics 126, 11031114.CrossRefGoogle ScholarPubMed
Johnson, L., Pilder, S., Bailey, J., & Olds-Clarke, P., (1995). Sperm from mice carrying one or two t haplotypes are deficient in investment and oocyte penetration. Developmental Biology 168, 138149.CrossRefGoogle ScholarPubMed
Lyon, M. F., (1984). Transmission ratio distortion in mouse t-haplotypes is due to multiple distorter genes acting on a responder locus. Cell 37, 621628.CrossRefGoogle ScholarPubMed
Lyon, M. F., (1986). Male sterility of the mouse t-complex is due to homozygosity of the distorter genes. Cell 44, 357363.CrossRefGoogle ScholarPubMed
Lyon, M. F., (1987). Distorter genes of the mouse t-complex impair male fertility when heterozygous. Genetical Research 49, 5760.CrossRefGoogle ScholarPubMed
Lyon, M. F., (1991). The genetic basis of transmission ratio distortion and male sterility due to the t-complex. American Naturalist 137, 349358.CrossRefGoogle Scholar
Lyon, M. F., & Bechtol, K. B., (1977). Derivation of mutant t-haplotypes of the mouse by presumed duplication or deletion. Genetical Research 20, 6376.CrossRefGoogle Scholar
Lyon, M. F., & Meredith, R., (1964). Investigations of the nature of t-alleles in the mouse. II. Genetic analysis of an unusual mutant allele and its derivatives. Heredity 19, 313325.Google ScholarPubMed
Mazarakis, N. D., Nelki, D., Lyon, M. F., Ruddy, S., Evans, E. P., Freemont, P., & Dudley, K., (1991). Isolation and characterisation of a testis-expressed developmentally regulated gene from the distal inversion of the mouse t-complex. Development 111, 561571.CrossRefGoogle ScholarPubMed
Olds-Clarke, P., & Johnson, L. R., (1993). t haplotypes in the mouse compromise sperm flagellar function. Developmental Biology 155, 1425.CrossRefGoogle ScholarPubMed
Pilder, S. H., Hammer, M. F., & Silver, L. M., (1991). A novel mouse chromosome 17 hybrid sterility locus: implications for the origin of t haplotypes. Genetics 129, 237246.CrossRefGoogle ScholarPubMed
Pilder, S. H., Olds-Clarke, P., Phillips, D. M., & Silver, L. M., (1993). Hybrid sterility-6: a mouse t complex locus controlling sperm flagellar assembly and movement. Developmental Biology 159, 631642.CrossRefGoogle Scholar
Rappold, G. A., Stubbs, L., Labeit, S., Crkvenjakov, R. B., & Lehrach, H., (1987). Identification of a testis-specific gene from the mouse t-complex next to a CpG-rich island. EMBO Journal 6, 19751980.CrossRefGoogle ScholarPubMed
Sarvetnick, N., Fox, H. S., Mann, E., Mains, P. E., Elliott, R. W., & Silver, L. M., (1986). Nonhomologous pairing in mice heterozygous for a t haplotype can produce recombinant chromosomes with duplications and deletions. Genetics 113, 723734.CrossRefGoogle Scholar
Searle, A. G., & Beechey, C. V., (1974). Sperm-count, eggfertilization and dominant lethality after X-irradiation of mice. Mutation Research 22, 6372.CrossRefGoogle ScholarPubMed
Silver, L. M., (1985). Mouse t haplotypes. Annual Review of Genetics 19, 179208.CrossRefGoogle ScholarPubMed
Silver, L. M., (1993). The peculiar journey of a selfish chromosome: mouse t haplotypes and meiotic drive. Trends in Genetics 9, 250254.CrossRefGoogle ScholarPubMed
Silver, L. M., (1996). Maps of the mouse t complex. In Genetic Variants and Strains of the Laboratory Mouse, 3rd edn (ed. Lyon, M. F., Rastan, S., & Brown, S. D. M.), pp. 925–28. Oxford: Oxford University Press.Google Scholar
Silverstein, E., Sokoloff, L., Mickelsen, O., & Jay, G. E. Jr, (1961). Primary polydipsia and hydronephrosis in an inbred strain of mice. American Journal of Pathology 38, 143159.Google Scholar
Snyder, L. C., & Silver, L. M., (1991). The mouse t complex responder locus. Genome Analysis, vol. 3, Genes and Phenotypes, pp. 3757. Cold Spring Harbor: Cold Spring Harbor Press.Google Scholar
Wojcinski, Z. W., Renlund, R. C., Barsoum, N. J., & Smith, G. S., (1992). Struvite urolithiasis in a B6C3F1 mouse. Laboratory Animals 26, 281287.CrossRefGoogle Scholar