Skip to main content Accessibility help
×
Home
Hostname: page-component-544b6db54f-zts5g Total loading time: 0.329 Render date: 2021-10-19T19:38:07.219Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

QUASIINVARIANT GAUSSIAN MEASURES FOR ONE-DIMENSIONAL HAMILTONIAN PARTIAL DIFFERENTIAL EQUATIONS

Published online by Cambridge University Press:  02 December 2015

NIKOLAY TZVETKOV*
Affiliation:
Université de Cergy-Pontoise, Cergy-Pontoise, F-95000, UMR 8088 du CNRS, France; nikolay.tzvetkov@u-cergy.fr

Abstract

HTML view is not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We prove the quasiinvariance of Gaussian measures (supported by functions of increasing Sobolev regularity) under the flow of one-dimensional Hamiltonian partial differential equations such as the regularized long wave, also known as the Benjamin–Bona–Mahony (BBM) equation.

Type
Research Article
Creative Commons
Creative Common License - CCCreative Common License - BY
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright
© The Author 2015

References

Ambrosio, L. and Figalli, A., ‘On flows associated to Sobolev vector fields in Wiener spaces: an approach a la DiPerna–Lions’, J. Funct. Anal. 256 (2009), 179214.CrossRefGoogle Scholar
Babin, A., Ilyin, A. and Titi, E., ‘On the regularization mechanism for the periodic Korteweg–de Vries equation’, Comm. Pure Appl. Math. 64 (2011), 591648.CrossRefGoogle Scholar
Benjamin, B., Bona, J. and Mahony, J., ‘Model equations for long waves in nonlinear dispersive systems’, Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Sci. 272 (1972), 4778.CrossRefGoogle Scholar
Bogachev, V., Gaussian Measures, Mathematical Surveys and Monographs, 62 (American Mathematical Society, Providence, RI, 1998).CrossRefGoogle Scholar
Bogachev, V. and Mayer-Wolf, E., ‘Absolutely continuous flows generated by Sobolev class vector fields in finite and infinite dimensions’, J. Funct. Anal. 167 (1999), 168.CrossRefGoogle Scholar
Bourgain, J., ‘Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations, Part II’, GAFA 3 (1993), 209262.Google Scholar
Bourgain, J., ‘Periodic nonlinear Schrödinger equation and invariant measures’, Comm. Math. Phys. 166 (1994), 126.CrossRefGoogle Scholar
Bourgain, J., ‘Invariant measures for the 2d-defocusing nonlinear Schrödinger equation’, Comm. Math. Phys. 176 (1996), 421445.CrossRefGoogle Scholar
Bourgain, J. and Bulut, A., ‘Invariant Gibbs measure evolution for the radial nonlinear wave equation on the 3D ball’, J. Funct. Anal. 266 (2014), 23192340.CrossRefGoogle Scholar
Bourgain, J. and Bulut, A., ‘Almost sure global well posedness for the radial nonlinear Schrodinger equation on the unit ball I: the 2D case’, Ann. Inst. H. Poincaré Anal. Non Linéaire 31 (2013), 12671288.CrossRefGoogle Scholar
Bourgain, J. and Bulut, A., ‘Almost sure global well posedness for the radial nonlinear Schrodinger equation on the unit ball II: the 3D case’, J. Eur. Math. Soc. 16 (2014), 12891325.CrossRefGoogle Scholar
Burq, N., Gérard, P. and Tzvetkov, N., ‘Strichartz inequalities and the nonlinear Schrödinger equation on compact manifolds’, Amer. J. Math. 126 (2004), 569605.CrossRefGoogle Scholar
Burq, N. and Tzvetkov, N., ‘Invariant measure for a three dimensional nonlinear wave equation’, Int. Math. Res. Not. IMRN (2007), 126.Google Scholar
Burq, N. and Tzvetkov, N., ‘Random data Cauchy theory for supercritical wave equations I. Local theory’, Invent. Math. 173 (2008), 449475.CrossRefGoogle Scholar
Burq, N. and Tzvetkov, N., ‘Random data Cauchy theory for supercritical wave equations II. A global existence result’, Invent. Math. 173 (2008), 477496.CrossRefGoogle Scholar
Burq, N., Thomann, L. and Tzvetkov, N., ‘Long time dynamics for the one dimensional non linear Schrödinger equation’, Ann. Inst. Fourier 63 (2013), 21372198.CrossRefGoogle Scholar
Cameron, R. H. and Martin, W. T., ‘Transformation of Wiener integrals under translations’, Ann. of Math. (2) 45 (1944), 386396.CrossRefGoogle Scholar
Cruzeiro, A. B., ‘Equations différentielles ordinaire: non explosition et mesures quasi-invariantes’, J. Funct. Anal. 54 (1983), 193206.CrossRefGoogle Scholar
Cruzeiro, A. B., ‘Equations différentielles sur l’espace de Wiener et formules de Cameron–Martin non linéaires’, J. Funct. Anal. 54 (1983), 206227.CrossRefGoogle Scholar
Deng, Y., ‘Two dimensional NLS equation with random radial data’, Anal. PDE 5 (2012), 913960.CrossRefGoogle Scholar
Deng, Y., ‘Invariance of the Gibbs measure for the Benjamin–Ono equation’, J. Eur. Math. Soc. 17 (2015), 11071198.CrossRefGoogle Scholar
de Suzzoni, A. S., ‘Wave turbulence for the BBM equation: stability of a Gaussian statistics under the flow of BBM’, Comm. Math. Phys. 326 (2014), 773813.CrossRefGoogle Scholar
de Suzzoni, A. S., ‘Invariant mesure for the cubic non linear wave equation on the unit ball of R 3 ’, Dyn. Partial Differ. Equ. 8 (2011), 127147.CrossRefGoogle Scholar
Erdogan, M. and Tzirakis, N., ‘Global smoothing for the periodic KdV evolution’, Int. Math. Res. Not. IMRN (2012), 45894614.Google Scholar
Lannes, D., The Water Waves Problem: Mathematical Analysis and Asymptotics, Mathematical Surveys and Monographs (American Mathematical Society, 2013).CrossRefGoogle Scholar
Lebowitz, J., Rose, R. and Speer, E., ‘Statistical dynamics of the nonlinear Schrödinger equation’, J. Stat. Phys. V 50 (1988), 657687.CrossRefGoogle Scholar
Nahmod, A., Oh, T., Rey-Bellet, L. and Staffilani, G., ‘Invariant weighted Wiener measures and almost sure global well-posedness for the periodic derivative NLS’, J. Eur. Math. Soc. 14 (2012), 12751330.CrossRefGoogle Scholar
Nahmod, A., Rey-Bellet, L., Sheffield, S. and Staffilani, G., ‘Absolute continuity of Brownian bridges under certain gauge transformations’, Math. Res. Lett. 18(5) (2011), 875887.CrossRefGoogle Scholar
Oh, T., ‘Invariance of the Gibbs measure for the Schrödinger–Benjamin–Ono system’, SIAM J. Math. Anal. 41 (2009), 22072225.CrossRefGoogle Scholar
Oh, T., ‘Invariance of the white noise for KdV’, Comm. Math. Phys. 292(1) (2009), 217236.CrossRefGoogle Scholar
Olver, P. J., ‘Euler operators and conservation laws of the BBM equation’, Math. Proc. Cambridge Philos. Soc. 85 (1979), 143160.CrossRefGoogle Scholar
Ramer, R., ‘On nonlinear transformations of Gaussian measures’, J. Funct. Anal. 15 (1974), 166187.CrossRefGoogle Scholar
Richards, G., ‘Invariance of the Gibbs measure for the periodic quartic gKdV’, Ann. Inst. H. Poincaré Anal. Non Linéaire, to appear.Google Scholar
Thomann, L. and Tzvetkov, N., ‘Gibbs measure for the periodic derivative non linear Schrödinger equation’, Nonlinearity 23 (2010), 27712791.CrossRefGoogle Scholar
Tzvetkov, N., ‘Invariant measures for the defocusing NLS’, Ann. Inst. Fourier 58 (2008), 25432604.CrossRefGoogle Scholar
Tzvetkov, N. and Visciglia, N., ‘Invariant measures and long-time behavior for the Benjamin–Ono equation’, Int. Math. Res. Not. IMRN (2014), 46794714.CrossRefGoogle Scholar
Tzvetkov, N. and Visciglia, N., ‘Invariant measures and long time behaviour for the Benjamin–Ono equation II’, J. Math. Pures Appl. 103 (2015), 102141.CrossRefGoogle Scholar
Quastel, J. and Valko, B., ‘KdV preserves white noise’, Comm. Math. Phys. 277 (2008), 707714.CrossRefGoogle Scholar
Yudovich, V., ‘Non-stationary flows of an ideal incompressible fluid’, Zh. Vychisl. Mat. Mat. Fiz. (1963), 10321066. (in Russian).Google Scholar
Zhidkov, P., KdV and Nonlinear Schrödinger Equations: Qualitative Theory, Lecture Notes in Mathematics, 1756 (Springer, 2001).Google Scholar
You have Access
Open access
14
Cited by

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

QUASIINVARIANT GAUSSIAN MEASURES FOR ONE-DIMENSIONAL HAMILTONIAN PARTIAL DIFFERENTIAL EQUATIONS
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

QUASIINVARIANT GAUSSIAN MEASURES FOR ONE-DIMENSIONAL HAMILTONIAN PARTIAL DIFFERENTIAL EQUATIONS
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

QUASIINVARIANT GAUSSIAN MEASURES FOR ONE-DIMENSIONAL HAMILTONIAN PARTIAL DIFFERENTIAL EQUATIONS
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *