Skip to main content Accessibility help
×
Home
Hostname: page-component-888d5979f-jgqf9 Total loading time: 0.184 Render date: 2021-10-26T15:00:23.219Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

ANDRÉ–OORT CONJECTURE AND NONVANISHING OF CENTRAL $L$ -VALUES OVER HILBERT CLASS FIELDS

Published online by Cambridge University Press:  20 July 2016

ASHAY A. BURUNGALE
Affiliation:
Department of Mathematics, University of Arizona, 617 N. Santa Rita Ave., P.O. Box 210089, Tucson, AZ 85721, USA; ashayburungale@gmail.com
HARUZO HIDA
Affiliation:
Department of Mathematics, UCLA, Los Angeles, CA 90095-1555, USA; hida@math.ucla.edu

Abstract

HTML view is not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let $F/\mathbf{Q}$ be a totally real field and $K/F$ a complex multiplication (CM) quadratic extension. Let $f$ be a cuspidal Hilbert modular new form over $F$ . Let ${\it\lambda}$ be a Hecke character over $K$ such that the Rankin–Selberg convolution $f$ with the ${\it\theta}$ -series associated with ${\it\lambda}$ is self-dual with root number 1. We consider the nonvanishing of the family of central-critical Rankin–Selberg $L$ -values $L(\frac{1}{2},f\otimes {\it\lambda}{\it\chi})$ , as ${\it\chi}$ varies over the class group characters of $K$ . Our approach is geometric, relying on the Zariski density of CM points in self-products of a Hilbert modular Shimura variety. We show that the number of class group characters ${\it\chi}$ such that $L(\frac{1}{2},f\otimes {\it\lambda}{\it\chi})\neq 0$ increases with the absolute value of the discriminant of $K$ . We crucially rely on the André–Oort conjecture for arbitrary self-product of the Hilbert modular Shimura variety. In view of the recent results of Tsimerman, Yuan–Zhang and Andreatta–Goren–Howard–Pera, the results are now unconditional. We also consider a quaternionic version. Our approach is geometric, relying on the general theory of Shimura varieties and the geometric definition of nearly holomorphic modular forms. In particular, the approach avoids any use of a subconvex bound for the Rankin–Selberg $L$ -values. The Waldspurger formula plays an underlying role.

Type
Research Article
Creative Commons
Creative Common License - CCCreative Common License - BY
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright
© The Author(s) 2015

References

Andreatta, F., Goren, E., Howard, B. and Pera, K., ‘Faltings heights of abelian varieties with complex multiplication’, Preprint, available at arXiv:1508.00178.Google Scholar
Bloch, S. and Kato, K., ‘L-functions and Tamagawa numbers of motives’, inThe Grothendieck Festschrift. Vol. I, Progress in Mathematics, 86 (Birkhäuser, Boston, MA, 1990), 333400.Google Scholar
Brauer, R., ‘On the zeta-functions of algebraic number fields’, Amer. J. Math. 69 (1947), 243250.CrossRefGoogle Scholar
Burungale, A., ‘On the 𝜇-invariant of the cyclotomic derivative of a Katz p-adic L-function’, J. Inst. Math. Jussieu 14(1) (2015), 131148.CrossRefGoogle Scholar
Castella, F., ‘On the $p$ -adic variation of Heegner points’, Preprint 2014, arXiv:1410.6591.Google Scholar
Chai, C.-L., ‘Hecke orbits as Shimura varieties in positive characteristic’, inInternational Congress of Mathematicians. Vol. II (European Mathematical Society, Zurich, 2006), 295312.Google Scholar
Chai, C.-L. and Oort, F., ‘Abelian varieties isogenous to a Jacobian’, Ann. of Math. (2) 176(1) (2012), 589635.CrossRefGoogle Scholar
Clozel, L. and Ullmo, E., ‘Équidistribution de mesures algébriques’, Compos. Math. 141(5) (2005), 12551309.CrossRefGoogle Scholar
Cohen, P., ‘Hyperbolic equidistribution problems on Siegel 3-folds and Hilbert modular varieties’, Duke Math. J. 129 (2005), 87127.CrossRefGoogle Scholar
Cornut, C., ‘Non-trivialité des points de Heegner’, C. R. Math. Acad. Sci. Paris 334(12) (2002), 10391042.CrossRefGoogle Scholar
Cornut, C. and Vatsal, V., ‘Nontriviality of Rankin–Selberg L-functions and CM points’, inL-Functions and Galois Representations, London Mathematical Society Lecture Note Series, 320 (Cambridge University Press, Cambridge, 2007), 121186.CrossRefGoogle Scholar
Edixhoven, B., ‘Special points on products of modular curves’, Duke Math. J. 126(2) (2005), 325348.Google Scholar
Harris, M., ‘Arithmetic vector bundles and automorphic forms on Shimura varieties. I’, Invent. Math. 82(1) (1985), 151189.CrossRefGoogle Scholar
Harris, M., ‘Arithmetic vector bundles and automorphic forms on Shimura varieties. II’, Compos. Math. 60(3) (1986), 323378.Google Scholar
Hida, H., ‘Non-vanishing modulo p of Hecke L-values’, inGeometric Aspects of Dwork Theory (eds. Adolphson, A., Baldassarri, F., Berthelot, P., Katz, N. and Loeser, F.) (Walter de Gruyter, Berlin, 2004), 735784.Google Scholar
Hida, H., p-Adic Automorphic Forms on Shimura Varieties, Springer Monographs in Mathematics (Springer, New York, 2004).CrossRefGoogle Scholar
Hida, H., ‘The Iwasawa 𝜇-invariant of p-adic Hecke L-functions’, Ann. of Math. (2) 172 (2010), 41137.CrossRefGoogle Scholar
Hida, H., Elliptic Curves and Arithmetic Invariants, Springer Monographs in Mathematics (Springer, New York, 2013), xviii+449 pp.CrossRefGoogle Scholar
Hsieh, M.-L., ‘Special values of anticyclotomic Rankin–Selberg L-functions’, Doc. Math. 19 (2014), 709767.Google Scholar
Jiang, D.-H., Li, J.-S. and Zhang, S.-W., ‘Periods and distribution of cycles on Hilbert modular varieties’, Pure Appl. Math. Q. 2(1) (2006), 219277. Part 1.CrossRefGoogle Scholar
Klingler, B. and Yafaev, A., ‘The André–Oort conjecture’, Ann. of Math. (2) 180(3) (2014), 867925.CrossRefGoogle Scholar
Masri, R. and Yang, T., ‘Nonvanishing of Hecke L-functions for CM fields and ranks of abelian varieties’, Geom. Funct. Anal. 21(3) (2011), 648679.CrossRefGoogle Scholar
Michel, P. and Venkatesh, A., ‘Equidistribution, L-functions and ergodic theory: on some problems of Yu. Linnik’, inInternational Congress of Mathematicians. Vol. II (European Mathematical Society, Zürich, 2006), 421457.Google Scholar
Michel, P. and Venkatesh, A., ‘Heegner points and non-vanishing of Rankin/Selberg L-functions’, inAnalytic Number Theory, Clay Math. Proc., 7 (American Mathematical Society, Providence, RI, 2007), 169183.Google Scholar
Pazuki, F., ‘Heights and regulators of numer fields and elliptic curves’, Numéro consacré au trimestre “Méthodes arithmétiques et applications”, automne 2013, 47–62, Publ. Math. Besançon Algèbre Théorie Nr., 2014/2, Presses Univ. Franche-Comté, Besançon, 2015.Google Scholar
Pila, J., ‘On a modular Fermat equation’, Preprint, available at arXiv:1508.05050.Google Scholar
Pila, J., ‘O-minimality and the André–Oort conjecture for C n ’, Ann. of Math. (2) 173(3) (2011), 17791840.CrossRefGoogle Scholar
Pila, J. and Tsimerman, J., ‘Ax-Lindemann for A g ’, Ann. of Math. (2) 179(2) (2014), 659681.CrossRefGoogle Scholar
Prasanna, K., ‘Integrality of a ratio of Petersson norms and level-lowering congruences’, Ann. of Math. (2) 163(3) (2006), 901967.CrossRefGoogle Scholar
Saito, H., ‘On Tunnell’s formula for characters of GL(2)’, Compos. Math. 85(1) (1993), 99108.Google Scholar
Serre, J.-P., ‘Le problème des groupes de congruence pour SL2 ’, Ann. of Math. (2) 92 (1970), 489527.CrossRefGoogle Scholar
Shimua, G., ‘Abelian varieties with complex multiplication and modular functions’, Princeton Mathematical Series, 46 (Princeton University Press, Princeton, NJ, 1998).Google Scholar
Templier, N., ‘A non-split sum of coefficients of modular forms’, Duke Math. J. 157(1) (2011), 109165.CrossRefGoogle Scholar
Tsimerman, J., ‘A proof of the André–Oort conjecture for ${\mathcal{A}}_{g}$ ’, Preprint, available at arXiv:1506.01466.Google Scholar
Tunnell, J., ‘Local 𝜖-factors and characters of GL(2)’, Amer. J. Math. 105(6) (1983), 12771307.CrossRefGoogle Scholar
Ullmo, E., ‘Applications du théorème d’Ax-Lindemann hyperbolique’, Compos. Math. 150(2) (2014), 175190.CrossRefGoogle Scholar
Urban, E., ‘Nearly overconvergent modular forms’, inIwasawa Theory 2012, Contribution in Mathematical and Computational Sciences, 7 (Springer, Heidelberg, New York, Dordrecht, London, 2015).Google Scholar
Venkatesh, A., ‘Sparse equidistribution problems, period bounds and subconvexity’, Ann. of Math. (2) 172(2) (2010), 9891094.CrossRefGoogle Scholar
Waldspurger, J.-L., ‘Sur les valeurs de certaines fonctions L automorphes en leur centre de symétrie’, Compos. Math. 54(2) (1985), 173242.Google Scholar
Yuan, X. and Zhang, S.-W., ‘On the average Colmez conjecture’, Preprint, available at arXiv:1507.06903.Google Scholar
Zhang, S.-W., ‘Heights of Heegner points on Shimura curves’, Ann. of Math. (2) 153(1) (2001), 27147.CrossRefGoogle Scholar
Zhang, S.-W., ‘Equidistribution of CM-points on quaternion Shimura varieties’, Int. Math. Res. Not. IMRN 2005(59) (2005), 36573689.CrossRefGoogle Scholar
You have Access
Open access
2
Cited by

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

ANDRÉ–OORT CONJECTURE AND NONVANISHING OF CENTRAL $L$ -VALUES OVER HILBERT CLASS FIELDS
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

ANDRÉ–OORT CONJECTURE AND NONVANISHING OF CENTRAL $L$ -VALUES OVER HILBERT CLASS FIELDS
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

ANDRÉ–OORT CONJECTURE AND NONVANISHING OF CENTRAL $L$ -VALUES OVER HILBERT CLASS FIELDS
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *