Skip to main content Accessibility help
×
Home
Hostname: page-component-cf9d5c678-h2mp8 Total loading time: 0.287 Render date: 2021-08-02T23:25:51.216Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

THE WEIGHT PART OF SERRE’S CONJECTURE FOR $\text{GL}(2)$

Published online by Cambridge University Press:  05 February 2015

TOBY GEE
Affiliation:
Department of Mathematics, Imperial College London SW7 2RH, UK; toby.gee@imperial.ac.uk
TONG LIU
Affiliation:
Department of Mathematics, Purdue University, West Lafayette, IN 47907, USA; tongliu@math.purdue.edu
DAVID SAVITT
Affiliation:
Department of Mathematics, University of Arizona, Tucson, AZ 85721, USA; savitt@math.arizona.edu

Abstract

Let $p>2$ be prime. We use purely local methods to determine the possible reductions of certain two-dimensional crystalline representations, which we call pseudo-Barsotti–Tate representations, over arbitrary finite extensions of $\mathbb{Q}_{p}$. As a consequence, we establish (under the usual Taylor–Wiles hypothesis) the weight part of Serre’s conjecture for $\text{GL}(2)$ over arbitrary totally real fields.

Type
Research Article
Creative Commons
Creative Common License - CCCreative Common License - BY
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/3.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright
© The Author(s) 2015

References

Buzzard, K., Diamond, F. and Jarvis, F., ‘On Serre’s conjecture for mod l Galois representations over totally real fields’, Duke Math. J. 155(1) (2010), 105161.CrossRefGoogle Scholar
Barnet-Lamb, T., Gee, T. and Geraghty, D., ‘Serre weights for rank two unitary groups’, Math. Ann. 356(4) (2013), 15511598.CrossRefGoogle Scholar
Barnet-Lamb, T., Gee, T., Geraghty, D. and Taylor, R., ‘Potential automorphy and change of weight’, Ann. of Math. (2) 179(2) (2014), 501609.CrossRefGoogle Scholar
Breuil, C., ‘Représentations p-adiques semi-stables et transversalité de Griffiths’, Math. Ann. 307(2) (1997), 191224.CrossRefGoogle Scholar
Breuil, C., ‘Sur un problème de compatibilité local-global modulo p pour GL2’, J. Reine Angew. Math. 92 (2014), 176.CrossRefGoogle Scholar
Breuil, C. and Mézard, A., ‘Multiplicités modulaires et représentations de GL2(Zp) et de Gal(p∕ℚp) en l = p’, Duke Math. J. 115(2) (2002), 205310. With an appendix by G. Henniart.Google Scholar
Breuil, C. and Mézard, A., ‘Mulitplicités modulaires raffinées’, Bull. Soc. Math. France 142 (2012), 127175.CrossRefGoogle Scholar
Breuil, C. and Paškūnas, V., ‘Towards a modulo p Langlands correspondence for GL2’, Mem. Amer. Math. Soc. 216(1016) (2012), vi+114.Google Scholar
Conrad, B., ‘Lifting global representations with local properties’, Preprint, 2011.Google Scholar
Coleman, R. F. and Voloch, J. F., ‘Companion forms and Kodaira–Spencer theory’, Invent. Math. 110(2) (1992), 263281.CrossRefGoogle Scholar
Diamond, F. and Savitt, D., ‘Serre weights for locally reducible two-dimensional Galois representations’, J. Inst. Math. Jussieu, to appear.Google Scholar
Edixhoven, B., ‘The weight in Serre’s conjectures on modular forms’, Invent. Math. 109(3) (1992), 563594.CrossRefGoogle Scholar
Emerton, M., Gee, T. and Savitt, D., ‘Lattices in the cohomology of Shimura curves’, Invent. Math., to appear.Google Scholar
Fontaine, J.-M., ‘Representations p-adiques semi-stables’, Astérisque 223 (1994), 113184.Google Scholar
Gee, T., ‘A modularity lifting theorem for weight two Hilbert modular forms’, Math. Res. Lett. 13(5–6) (2006), 805811.CrossRefGoogle Scholar
Gee, T., ‘Automorphic lifts of prescribed types’, Math. Ann. 350(1) (2011), 107144.CrossRefGoogle Scholar
Gee, T., ‘On the weights of mod p Hilbert modular forms’, Invent. Math. 184 (2011), 146. doi:10.1007/s00222-010-0284-5..CrossRefGoogle Scholar
Gee, T. and Kisin, M., ‘The Breuil–Mézard conjecture for potentially Barsotti–Tate representations’, Forum of Mathematics, Pi 2 (2014), e1 (56 pages).CrossRefGoogle Scholar
Gee, T., Liu, T. and Savitt, D., ‘Crystalline extensions and the weight part of Serre’s conjecture’, Algebra Number Theory 6(7) (2012), 15371559.CrossRefGoogle Scholar
Gee, T., Liu, T. and Savitt, D., ‘The Buzzard–Diamond–Jarvis conjecture for unitary groups’, J. Amer. Math. Soc. 27(2) (2014), 389435.CrossRefGoogle Scholar
Gee, T. and Savitt, D., ‘Serre weights for mod p Hilbert modular forms: the totally ramified case’, J. reine angew. Math. 660 (2011), 126.CrossRefGoogle Scholar
Gross, B. H., ‘A tameness criterion for Galois representations associated to modular forms (mod p)’, Duke Math. J. 61(2) (1990), 445517.CrossRefGoogle Scholar
Kisin, M., ‘Crystalline representations and F-crystals’, inAlgebraic Geometry and Number Theory, Progress in Mathematics, 253 (Birkhäuser Boston, Boston, MA, 2006), 459496.CrossRefGoogle Scholar
Kisin, M., ‘Moduli of finite flat group schemes, and modularity’, Ann. of Math. (2) 170(3) (2009), 10851180.CrossRefGoogle Scholar
Liu, T., ‘On lattices in semi-stable representations: a proof of a conjecture of Breuil’, Compos. Math. 144(1) (2008), 6188.CrossRefGoogle Scholar
Newton, J., ‘Serre weights and Shimura curves’, Proc. Lond. Math. Soc. (3) 108(6) (2014), 14711500.CrossRefGoogle Scholar
Newton, J. and Yoshida, T., ‘Shimura curves, the Drinfeld curve and Serre weights’, Preprint, 2014.Google Scholar
Savitt, D., ‘On a conjecture of Conrad, Diamond, and Taylor’, Duke Math. J. 128(1) (2005), 141197.CrossRefGoogle Scholar
Schein, M. M., ‘Weights in Serre’s conjecture for Hilbert modular forms: the ramified case’, Israel J. Math. 166 (2008), 369391.CrossRefGoogle Scholar
Serre, J.-P., ‘Sur les représentations modulaires de degré 2 de Gal(∕ℚ)’, Duke Math. J. 54(1) (1987), 179230.CrossRefGoogle Scholar
You have Access
Open access
11
Cited by

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

THE WEIGHT PART OF SERRE’S CONJECTURE FOR $\text{GL}(2)$
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

THE WEIGHT PART OF SERRE’S CONJECTURE FOR $\text{GL}(2)$
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

THE WEIGHT PART OF SERRE’S CONJECTURE FOR $\text{GL}(2)$
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *