Hostname: page-component-848d4c4894-pjpqr Total loading time: 0 Render date: 2024-07-02T14:36:46.754Z Has data issue: false hasContentIssue false

PROTEINURIA IN PREECLAMPSIA: FROM BENCH TO BEDSIDE

Published online by Cambridge University Press:  12 January 2010

ANGUS RITCHIE
Affiliation:
Departments of Renal Medicine and Medicine, St George Hospital and University of NSW, Kogarah, Sydney NSW, Australia.
MARK A BROWN*
Affiliation:
Departments of Renal Medicine and Medicine, St George Hospital and University of NSW, Kogarah, Sydney NSW, Australia.
*
Professor MA Brown, Department of Renal Medicine, St George Hospital, Kogarah. NSW. 2217, Australia. mbrown@unsw.edu.au

Extract

Pre-eclampsia (PE) remains the leading cause of maternal and fetal mortality in the developed world and parts of the developing world. Morbidity and mortality from PE is increased in the developing world compared to the developed world, as availability and access to antenatal care and pathology services are limited.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Khan, KS, Wojdyla, D, Say, L, Gülmezoglu, AM, Van Look, PFA. WHO analysis of causes of maternal death: a systematic review. Lancet 2006; 367; 1066–74.CrossRefGoogle Scholar
2Brown, MA, Hague, WM, Higgins, J, Lowe, S, McCowan, L, Oats, J et al. The detection, investigation and management of hypertension in pregnancy: full consensus statement. Aust N Z J Obstet Gynaecol 2000; 40: 139–56.CrossRefGoogle ScholarPubMed
3Lowe, SA, Brown, MA, Dekker, G, Gatt, S, McLintoch, C, McMahon, L et al. Guidelines for the management of hypertensive disorders of pregnancy 2008. Society of Obstetric Medicine of Australia and New Zealand (SOMANZ).Google Scholar
4Brown, MA, Lindheimer, MD, de Swiet, M, Van Assche, A, Moutquin, JM. The classification and diagnosis of the hypertensive disorders of pregnancy: Statement from the International Society for the Study of Hypertension in Pregnancy (ISSHP). Hypertens Pregnancy 2001; 20: 914.Google Scholar
5Hazra, S, Waugh, J, Bosio, P. ‘Pure’ pre-eclampsia before 20 weeks of gestation: a unique entity. Br J Obstet Gynaecol 2003; 110: 1034–35.Google ScholarPubMed
6Stillman, IE, Karumanchi, SA. The glomerular injury of preeclampsia. J Am Soc Nephrol 2007; 18: 2281–84.CrossRefGoogle ScholarPubMed
7Imasawa, T, Nishiwaki, T, Nishimura, M, Shikama, N, Matsumura, R, Nagai, M et al. A case of “pure” preeclampsia with nephrotic syndrome before 15 weeks of gestation in a patient whose renal biopsy showed glomerular capillary endotheliosis. Am J Kidney Dis 2006; 48: 495501.CrossRefGoogle Scholar
8Homer, CS, Brown, MA, Mangos, G, Davis, GK. Non-proteinuric pre-eclampsia: a novel risk indicator in women with gestational hypertension. J Hypertens 2008: 26: 295302.CrossRefGoogle ScholarPubMed
9Sibai, BM, Stella, CL. Diagnosis and management of atypical preeclampsia-eclampsia. Am J Obstet Gynecol 2009; 200: 481.e1481.e7.CrossRefGoogle ScholarPubMed
10Maybury, H, Waugh, J. Proteinuria in pregnancy – just what is significant? Fet Mat Med Rev 2004; 16: 7195.CrossRefGoogle Scholar
11Lindheimer, MD, Grünfeld, J-P, Davison, JM. Renal Disorders. In: Barron, WM, Lindheimer, MD (eds). Medical disorders in pregnancy (3rd Ed). Mosby, St Louis; 2000: 39–70.Google Scholar
12Kuo, VS, Koumantanis, G, Gallery, ED. Proteinuria and its assessment in normal and hypertensive pregnancy. Am J Obstet Gynecol 1992; 167: 723–28.Google Scholar
13Kanwar, YS, Linker, A, Farquhar, MG. Increased permeability of the glomerular basement membrane to ferritin after removal of glycosaminoglycans (heparin sulfate) by enzyme digestion. J Cell Biol 1980; 86: 688–93.CrossRefGoogle Scholar
14Pavenstadt, H, Kriz, W, Kretzler, M. Cell biology of the glomerular podocyte. Physiol Rev 2003; 83: 253307.Google Scholar
15Hauser, PV, Collino, F, Bussolati, B, Camussi, G. Nephrin and endothelial injury. Curr Opin Nephrol Hypertens 2009; 18: 38.CrossRefGoogle ScholarPubMed
16Schwarz, K, Simons, M, Reiser, J, Saleem, MA, Faul, C, Kriz, W et al. Podocin, a raft-associated component of the glomerular slit diaphragm, interacts with CD2AP and nephrin. J Clin Invest 2001; 108: 1621–29.CrossRefGoogle ScholarPubMed
17Patrakka, J, Tryggvason, K. New insights into the role of podocytes in proteinuria. Nat Rev Nephrol 2009; 5: 463–68.CrossRefGoogle ScholarPubMed
18Sturgiss, SN, Dunlop, W, Davison, JM. Renal haemodynamics and tubular function in human pregnancy. Baillieres Clin Obstet Gynaecol 1994: 8; 209–34.CrossRefGoogle ScholarPubMed
19Roberts, M, Lindheimer, MD, Davison, JM. Altered glomerular permselectivity to neutral dextrans and heteroporous membrane modelling in human pregnancy. Am J Physiol 1996; 270: F33843.Google Scholar
20Milne, JE, Lindheimer, MD, Davison, JM. Glomerular heteroporous membrane modelling in third trimester and postpartum before and during amino acid infusion. Am J Physiol 2002; 282: F1705.Google Scholar
21Birn, H, Christensen, EI. Renal albumin absorption in physiology and pathology. Kid Int 2006; 69: 440–9.Google Scholar
22Anderson, S, Komers, R, Brenner, BM. Renal and systemic manifestations of glomerular disease. In: Brenner, BM, Levine, SA (eds). Brenner and Rector's The Kidney (8th Ed). Saunders Elsevier, Philadelphia 2008. Accessed online via MD Consult 18 May 2009 1900 hrs.Google Scholar
23Osicka, TM, Houlihan, CA, Chan, JG, Jerums, G, Comper, WD. Albuminuria in patients with type 1 diabetes is directly linked to changes in the lysosome-mediated degradation of albumin during renal passage. Diabetes 2000; 49: 1579–84.CrossRefGoogle ScholarPubMed
24Russo, LM, Bakris, GL, Comper, WD. Renal handling of albumin: a critical review of basic concepts and perspective. Am J Kidney Dis 2002; 39: 899–19.CrossRefGoogle ScholarPubMed
25Russo, LM, Sandoval, RM, McKee, M, Osicka, TM, Collins, AB, Brown, D et al. The normal kidney filters nephrotic levels of albumin retrieved by the proximal tubule cells: retrieval is disrupted in nephrotic states. Kid Int 2007; 71: 504–13.Google Scholar
26Hayashi, M, Ueda, Y, Hoshimoto, K, Ota, Y, Fukusawa, I, Sumori, K et al. Changes in urinary excretion of six biochemical parameters in normotensive pregnancy and preeclampsia. Am J Kidney Dis 2002; 39: 392400.CrossRefGoogle ScholarPubMed
27Beetham, R, Dawnay, A, Menabawy, M, Silver, A. Urinary excretion of albumin and retinol-binding protein during normal pregnancy. J Clin Path 1988; 41: 1089–92.CrossRefGoogle ScholarPubMed
28Brown, MA, Wang, MX, Buddle, ML, Carlton, MA, Cario, GM, Zammit, VC et al. Albumin excretory rate in normal and hypertensive pregnancy. Clinical Science 1994; 86: 251–55.Google Scholar
29Thongboonkerd, V, McLeish, KR, Arthur, JM, Klein, JB. Proteomic analysis of normal human urinary proteins isolated by acetone precipitation or ultracentrifugation. Kid Int 2002; 62: 1461–69.CrossRefGoogle ScholarPubMed
30Cheung, CK, Lao, T, Swaminathan, R. Urinary excretion of some proteins and enzymes during normal pregnancy. Clin Chem 1989; 35: 1978–80.Google Scholar
31Douma, CE, Van Der Post, JA, van Acker, BA, Boer, K, Koopman, MG. Circadian variation of urine albumin excretion in pregnany. Br J Obstet Gynaecol 1995; 102: 107–10.CrossRefGoogle Scholar
32Higby, K, Suiter, CR, Phelps, JY, Siler-Khodr, T, Langer, O. Normal values of urinary albumin and total protein excretion during pregnancy. Am J Obstet Gynecol 1994; 171: 984–89.Google Scholar
33Tamm, I, Horsfall, FL. Characterisation and separation of an inhibitor of viral hemagglutination present in urine. Proc Soc Exp Biol Med 1950; 74: 108–14.CrossRefGoogle ScholarPubMed
34Hunt, IS, McGiven, AR, Groufsky, A, Lynn, KL, Taylor, MC. Affinity-purified antibodies of defined specificity for use in a solid-phase microplate radioimmunoassay of human Tamm-Horsfall glycoprotein in urine. Biochem J 1985; 227: 957–63.CrossRefGoogle Scholar
35Hoyer, JR, Seller, MW. Pathophysiology of Tamm-Horsfall protein. Kid Int 1979; 16: 279–89.Google Scholar
36Muchmore, A, Decker, JM. Uromodulin: a unique 85 kilodalton immunosuppressive glycoprotein isolated from urine of pregnant women. Science 1985; 229: 479–81.Google Scholar
37Pennica, D, Kohr, WJ, Kuang, W-J, Glaister, D, Aggarwal, BB, Chen, EY, Goeddel, DV. Identification of human Uromodulin as the Tamm Horsfall urinary glycoprotein. Science 1987; 236: 8388.Google Scholar
38Devuyst, O, Dahan, K, Pirson, Y. Tamm-Horsfall protein or uromodulin: new ideas about an old molecule. Nephrol Dial Transplant 2005; 20: 1290–94.CrossRefGoogle ScholarPubMed
39Kumar, S, Muchmore, A. Tamm-Horsfall protein – uromodulin (1950–1990). Kid Int 1990; 37: 13951401.Google Scholar
40Koga, K, Osuga, Y, Yoshino, O, Hirota, Y, Ruimeng, X, Hirata, T et al. Elevated serum soluble vascular endothelial growth factor receptor 1 (sVEGFR-1) levels in women with preeclampsia. J Clin Endocrinol Metab 2003; 88: 2348–51.CrossRefGoogle ScholarPubMed
41Maynard, SE, Min, JY, Merchan, J, Lim, KH, Li, J, Mondal, S et al. Excess placental soluble fms-like tyrosine kinase 1 (sFlt1) may contribute to endothelial dysfunction, hypertension, and proteinuria in preeclampsia. J Clin Invest 2003; 111: 649–58.Google Scholar
42Hertig, A, Berkane, N, Lefevre, G, Toumi, K, Marti, HP, Capeau, J et al. Maternal serum sFlt1 concentration is an early and reliable predictive marker of preeclampsia. Clin Chem 2004; 50: 1702–703.CrossRefGoogle ScholarPubMed
43Venkatesha, S, Toporsian, M, Lam, C, Hannai, J, Mammoto, T, Kim, YM et al. Soluble endoglin contributes to the pathogenesis of preeclampsia. Nat Med 2006; 12: 642–49.CrossRefGoogle Scholar
44Murohara, T, Horowitz, JR, Silver, M, Tsurumi, Y, Chen, D, Sullivan, A et al. Vascular endothelial growth factor/vascular permeability factor enhances vascular permeability via nitric oxide and prostacyclin. Circulation 1998; 97: 99107.Google Scholar
45He, H, Venema, VJ, Gu, X, Venema, RC, Marrero, MB, Caldwell, RB. Vascular endothelial growth factor signals endothelial cell production of nitric oxide and prostacyclin through flk-1/KDR activation of c-Src. J Biol Chem, 1999; 274: 25130–35.CrossRefGoogle ScholarPubMed
46Collino, F, Bussolati, B, Gerbaudo, E, Marozio, L, Pelissetto, S, Benedetto, C et al. Preeclamptic sera induce nephrin shedding from podocytes through endothelin-1 release by endothelial glomerular cells. Am J Physiol Renal Physiol 2008; 294: F1185–F1194.Google Scholar
47Henao, DE, Arias, LF, Mathieson, PW, Ni, L, Welsh, GI, Bueno, JC et al. Preeclamptic sera directly induce slit-diaphragm protein redistribution and alter podocyte barrier-forming capacity. Nephron Exp Nephrol 2008; 110: e7381.Google Scholar
48Brown, MA, Bowyer, L. Renal complications in the normal pregnancy. In: Johnson, RJ, Feehally, J (eds) Comprehensive clinical nephrology. Mosby, 2000; 47.1–47.14.Google Scholar
49Moran, P, Baylis, PH, Lindheimer, MD, Davison, JM. Glomerular ultrafiltration in normal and preeclamptic pregnancy. J Am Soc Nephrol 2003; 14: 648–52.CrossRefGoogle ScholarPubMed
50Spargo, BH, McCartney C, Winemiller, R. Glomerular capillary endotheliosis in toxaemia of pregnancy. Arch Pathol 1959; 13: 593–99.Google Scholar
51Nochy, D, Birembaut, P, Hinglais, N, Freund, M, Idatte, JM, Jacquot, C et al. Renal lesions in the hypertensive disorders of pregnancy: immunomorphological and ultrastructural changes in 114 cases. Clin Nephrol 1980; 13: 155–62.Google Scholar
52Packham, DK, Mathews, DC, Fairley, KF, Whitworth, JA, Kincaid-Smith, PS. Morphometric analysis of pre-eclampsia in women biopsied in pregnancy and post-partum. Kid Int 1988; 34; 704–11.CrossRefGoogle ScholarPubMed
53Strevens, H, Wide-Swensson, D, Hansen, A, Horn, T, Ingemarsson, I, Larsen, S. Glomerular endotheliosis in normal pregnancy and pre-eclampsia. Br J Obstet Gynaecol 2003; 110: 813–16.Google ScholarPubMed
54Lindheimer, MD, Mahowald, MB. Glomerular endotheliosis in normal pregnancy and pre-eclampsia. Br J Obstet Gynaecol 2004; 111: 191.CrossRefGoogle ScholarPubMed
55de Swiet, M, Lightstone, L. Glomerular endotheliosis in normal pregnancy and pre-eclampsia. Br J Obstet Gynaecol 2004; 111: 191–92.CrossRefGoogle ScholarPubMed
56Akbari, A. Glomerular endotheliosis in normal pregnancy and pre-eclampsia. (Correspondence) Br J Obstet Gynaecol 2004; 111: 192.Google Scholar
57Gallery, EDM. Glomerular endotheliosis in normal pregnancy and pre-eclampsia. (Correspondence) Br J Obstet Gynaecol 2004; 111: 193.CrossRefGoogle Scholar
58Chan, P, Brown, M, Simpson, JM, Davis, G. Proteinuria in pre-eclampsia: how much matters? Br J Obstet Gynaecol 2005; 112: 280–85.Google Scholar
59Voswinckel, P. A marvel of colors and ingredients. The story of the urine test strip. Kid Int – Supplement 1994; 47: S37.Google Scholar
60Free, AH, Rupe, CO, Metzler, I. Studies with a new colorimetric test for proteinuria. Clin Chem 1957; 3: 716–27.Google Scholar
61Barratt, J, Topham, P. Urine proteomics: the present and future of measuring urine protein components in disease. Can Med Assoc J 2007; 177: 361–68.CrossRefGoogle ScholarPubMed
62Gallery, ED, Gyory, AZ. Urinary concentration, white blood cell excretion, acid excretion, and acid-base status in normal pregnancy: alterations in pregnancy-associated hypertension. Am J Obstet Gynecol 1979; 135: 2736.CrossRefGoogle ScholarPubMed
63Saudan, PJ, Brown, MA, Farell, T, Shaw, L. Improved methods of assessing proteinuria in hypertensive pregnancy. Br J Obstet Gynaecol 1997; 104: 1159–64.Google Scholar
64Waugh, JJ, Bell, SC, Kilby, MD, Blackwell, CN, Seed, P, Shennan, AH et al. Optimal bedside urinalysis for the detection of proteinuria in hypertensive pregnancy: as study of diagnostic accuracy. Br J Obstet Gynaecol 2005; 112: 412–17.Google Scholar
65Phelan, LK, Brown, MA, Davis, GK, Mangos, G. A prospective study of the impact of automated dipstick urinalysis on the diagnosis of preeclampsia. Hypertens Pregnancy 2004; 23: 135–42.CrossRefGoogle ScholarPubMed
66Waugh, JJ, Clark, TJ, Divakaran, TG, Khan, KS, Kilby, MD. Accuracy of urinalysis dipstick techniques in predicting significant proteinuria in pregnancy. Obstet Gynecol 2004; 103: 769–77.Google Scholar
67Murray, N, Homer, CS, Davis, GK, Curtis, J, Mangos, G, Brown, MA. The clinical utility of routine urinalysis in pregnancy: a prospective study. Med J Aust 2002; 177: 477–80.Google Scholar
68Gribble, RK, Fee, SC, Berg, RL. The value of routine urine dipstick screening for protein at each prenatal visit. Am J Obstet Gynecol 1995; 173: 214–17.Google Scholar
69Waugh, J, Bell, SC, Kilby, MD, Lambert, P, Shennan, A, Halligan, A. Urine protein estimation in hypertensive pregnancy: which thresholds and laboratory assay best predict clinical outcome? Hypertens Pregnancy 2005; 24: 291302.CrossRefGoogle ScholarPubMed
70Côté, A-M, Firoz, T, Mattman, A, Lam, EM, von Dadelszen, P, Magee, LA. The 24-hour urine collection: gold standard or historical practice? Am J Obstet Gynecol 2008; 199: 625.CrossRefGoogle ScholarPubMed
71Somanathan, N, Farrell, T, Galimberti, A. A comparison between 24-hour and 2-hour urine collections for the determination of proteinuria. J Obstet Gynaecol 2003; 23: 378–80.CrossRefGoogle Scholar
72Abebe, J, Eigbefoh, J, Isabu, P, Okegbenin, S, Eifediyi, R, Okusanya, B. Accuracy of urine dipsticks, 2-h and 12-h urine collections for protein measurement as compared with the 24-h collection. J Obstet Gynaecol 2008; 28: 496500.CrossRefGoogle ScholarPubMed
73Ginsberg, JM, Chang, BS, Matarese, RA, Garella, S. Use of single voided urine samples to estimate quantitative proteinuria. N Engl J Med 1983; 309: 1543–46.Google Scholar
74Lane, C, Brown, MA, Dunsmuir, W, Kelly, J, Mangos, G. Can spot urine protein/creatinine ratio replace 24 h urine protein in clinical nephrology? Nephrology 2006; 11: 245–49.CrossRefGoogle ScholarPubMed
75Adelberg, AM, Miller, J, Doerzbacher, M, Lambers, DS. Correlation of quantitative protein measurements in 8-, 12-, and 24-hour urine samples for the diagnosis of preeclampsia. Am J Obstet Gynecol 2001; 185: 804807.CrossRefGoogle ScholarPubMed
76Rinehart, BK, Terrone, DA, Larmon, JE, Perry, KG Jr, Martin, RW, Martin, JN Jr. A 12-hour urine collection accurately assesses proteinuria in the hospitalized hypertensive gravida. J Perinatol 1999; 19: 556–58.CrossRefGoogle ScholarPubMed
77Lindow, SW, Davey, DA. The variability of urinary protein and creatinine excretion in patients with gestational proteinuric hypertension. Br J Obstet Gynaecol 1992; 99: 869–72.Google Scholar
78Gonsales Valério, E, Lopes Ramos, JG, Martins-Costa, SH, Letti Müller, AL. Variation in the urinary protein/creatinine ratio at four different periods of the day in hypertensive pregnant women. Hypertens Pregnancy 2005; 24: 213–21.Google Scholar
79Lowe, SA, Brown, MA, Dekker, G, Gatt, S, McLintoch, C, McMahon, L et al. Guidelines for the management of hypertensive disorders of pregnancy 2008. Society of Obstetric Medicine of Australia and New Zealand. http://www.somanz.org.Google Scholar
80Price, CP, Newall, RG, Boyd, JC. Use of protein:creatinine ratio measurements on random urine samples for prediction of significant proteinuria: a systematic review. Clin Chem 2005; 51: 1577–86.CrossRefGoogle ScholarPubMed
81Côté, A-M, Brown, MA, Lam, E, von Dadelszen, P, Firoz, T, Liston, RM et al. Diagnostic accuracy or urinary spot protein:creatinine ratio for proteinuria in hypertensive pregnant women: systematic review. Br Med J 2008; 336: 10031006.Google Scholar
82Papanna, R, Mann, LK, Kouides, RW, Glantz, JC. Protein/creatinine ratio in preeclampsia: a systematic review. Obstet Gynecol 2008; 112: 135–44.Google Scholar
83Vassalotti, JA, Stevens, LA, Levey, AS. Testing for chronic kidney disease: a position statement from the National Kidney Foundation. Am J Kidney Dis 2007; 50: 169–80.Google Scholar
84Ritz, E. Pathogenesis, clinical manifestations, and natural history of diabetic nephropathy. In: Feehally, J, Floege, J, Johnson, RJ (eds). Comprehensive clinical nephrology (3rd Ed). Mosby, Philadelphia; 2007: 353–64.Google Scholar
85Waugh, J, Kilby, M, Lambert, P, Bell, SC, Blackwell, CN, Shennan, A et al. Validation of the DCA microalbumin:creatinine ratio urinanalyzer for its use in pregnancy and preeclampsia. Hypertens Pregnancy 2003; 22: 7792.Google Scholar
86Bar, J, Hod, M, Erman, A, Friedman, S, Gelerenter, I, Kaplan, B et al. Microalbuminuria as an early predictor of hypertensive complications in pregnant women at high risk. Am J Kidney Dis 1996; 28: 220–25.CrossRefGoogle ScholarPubMed
87Franceschini, N, Savitz, DA, Kaufman, JS, Thorp, JM. Maternal urine albumin excretion and pregnancy outcome. Am J Kidney Dis 2005; 45: 1010–18.Google Scholar
88Poon, LC, Kametas, N, Bonino, S, Vercellotti, E, Nicolaides, KH. Urine albumin concentration and albumin-to-creatinine ratio at 11(+0) to 13(+6) weeks in the prediction of pre-eclampsia. Br J Obstet Gynaecol 2008; 115: 866–73.Google Scholar
89Ekbom, P, Damm, P, Nøgaard, K, Clausen, P, Feldt-Rasmussen, U, Feldt-Rasmussen, B. Urinary albumin excretion and 24-hour blood pressure as predictors of pre-eclampsia in type 1 diabetes. Diabetologia 2000; 43: 927–31.CrossRefGoogle Scholar
90Brown, MA, Buddle, ML. Hypertension in pregnancy: maternal and fetal outcomes according to laboratory and clinical features. Med J Aust 1996; 165: 360–65.Google Scholar
91von Dadelszen, P, Magee, LA, Devarakonda, RM, Hamilton, T, Ainsworth, LM, Yin, R, Norena, M, Walley, KR, Gruslin, A, Moutaquin, JM, Lee, SK, Russell, JA. The prediction of adverse maternal outcomes in preeclampsia. J Obstet Gynaecol Can 2004; 26: 871–79.CrossRefGoogle ScholarPubMed
92Thangaratinam, S, Coomarasamy, A, O'Mahony, F, Sharp, S, Zamora, J, Khan, KS et al. Estimation of proteinuria as a predictor of complications of pre-eclampsia: a systematic review. BMC Medicine 2009; 7: 10.Google Scholar
93Smith, GN, Walker, MC, Liu, A, Wen, SW, Swansburg, M, Ramshaw, H et al. A history of preeclampsia identifies women who have underlying cardiovascular risk factors. Am J Obstet Gynecol 2009; 200: 58.e18.Google Scholar
94Bellamy, L, Casas, JP, Hingorani, AD, Williams, DJ. Pre-eclampsia and risk of cardiovascular disease and cancer in later life: systematic review and meta-analysis. Br Med J 2007; 335: 974.Google Scholar
95Lykke, JA, Langhoff-Roos, J, Sibai, BM, Funai, EF, Triche, EW, Paidas, MJ. Hypertensive pregnancy disorders and subsequent cardiovascular morbidity and type 2 diabetes mellitus in the mother. Hypertension 2009; 53: 944–51.Google Scholar
96Vikse, BE, Irgens, LM, Leivstad, T, Skjæven, R, Iversen, BM. Preeclampsia and the risk of end-stage renal disease. N Eng J Med 2008; 359: 800809.Google Scholar
97Kajantie, E, Eriksson, JG, Osmond, C, Thornburg, K, Barker, DJ. Pre-eclampsia is associated with increased risk of stroke in the adult offspring: the Helsinki birth cohort study. Stroke 2009; 40: 1176–80.Google Scholar
98Pettersson, A, Richiardi, L, Cnattingius, S, Kaijser, M, Akre, O. Gestational hypertension, preeclampsia and the risk of testicular cancer. Cancer Res 2008; 68: 8832–36.Google Scholar
99Bar, J, Kaplan, B, Wittenberg, C, Erman, A, Boner, G, Ben-Rafael, Z et al. Microalbuminuria after pregnancy complicated by pre-eclampsia. Nephrol Dial Transplant 1999; 14: 1129–32.CrossRefGoogle ScholarPubMed
100North, RA, Simmons, D, Barnfather, D, Upjohn, M. What happens to women with preeclampsia? Microalbuminuria and hypertension following preeclampsia. Aust N Z J Obstet Gynaecol 1996; 36: 233–38.Google Scholar
101Shammas, AG, Maayah, JF. Hypertension and its relation to renal function 10 years after pregnancy complicated by pre-eclampsia and pregnancy induced hypertension. Saudi Med J 2000; 21: 190–92.Google Scholar
102Perkovic, V, Verdon, C, Ninomiya, T, Barzi, F, Cass, A, Patel, A. The relationship between proteinuria and coronary risk: a systematic review and meta-analysis. PLoS Medicine 2008; 5: e207.Google Scholar
103Holston, AM, Qian, C, Yu, KF, Epstein, FH, Karumanchi, SA, Levine, RJ. Circulating angiogenic factors in gestational proteinuria without hypertension. Am J Obstet Gynecol 2009; 200: 392.e110.Google Scholar
104Stettler, RW, Cunningham, FG. Natural history of chronic proteinuria complicating pregnancy. Am J Obstet Gynecol 1992; 167: 1219–24.Google Scholar
105Morikawa, M, Yamada, T, Minakami, H. Outcome of pregnancy in patients with isolated proteinuria. Curr Opin Obstet Gynecol 2009; Jul 23. [Epub ahead of print].Google Scholar
106Morikawa, M, Yamada, T, Yamada, T, Cho, K, Yamada, H, Sakuragi, N et al. Pregnancy outcome of women who developed proteinuria is the absence of hypertension after mid-gestation. J Perinat Med 2008; 36: 419–24.Google Scholar
107Ohkuchi, A, Hirashima, C, Matsubara, S, Suzuki, H, Takahashi, K, Usui, R et al. Serum sFlt-1:PlGF ratio, PlGF, and soluble endoglin levels in gestational proteinuria. Hypertens Pregnancy 2009; 28: 95108.Google Scholar
108Floege, J, Feehally, J. Introduction to glomerular disease: clinical presentations. In: Feehally, J, Floege, J, Johnson, RJ (eds). Comprehensive clinical nephrology (3rd Ed). Philadelphia: Mosby; 2007; 353–64.Google Scholar
109Lockitch, G (ed). Handbook of diagnostic biochemistry and hematology in normal pregnancy. Boca Raton, FL: CRC Press; 1993.Google Scholar
110Brown, MA. Chronic kidney disease in pregnancy: patterns of care and general principles of management. In: Davison, JM, Nelson-Piercy, C, Kehoe, S, Baker, P (eds). Renal disease in pregnancy. London: RCOG Press; 2008; 31–44.Google Scholar
111Packham, D, Fairley, KF. Renal biopsy: indications and complications in pregnancy. Br J Obstet Gynaecol 1987; 94: 935–39.CrossRefGoogle ScholarPubMed
112Wiggins, RC, Kshrisagar, B, Kelsch, RC, Wilson, BS. Fragmentation and polymeric complexes of human albumin in human urine. Clin Chim Acta 1985; 149: 155–63.Google Scholar
113Osicka, TM, Houlihan, CA, Chan, JG, Jerums, G, Comper, WD. Albuminuria in patients with type 1 diabetes is directly linked to changes in the lysosomes-mediated degradation of albumin during renal passage. Diabetes 2000; 49: 1579–84.Google Scholar
114Eppel, GA, Nagy, S, Jenkins, MA, Tudball, RN, Daskalakis, M, Balazs, ND et al. Variability of standard clinical protein assays in the analysis of a model urine solution of fragmented albumin. Clin Biochem 2000; 33: 487–94.Google Scholar
115Candiano, G, Musante, L, Bruschi, M, Petretto, A, Santucci, L, Del Boccio, P et al. Repetetive fragmentation products of albumin and alpha1-antitrypsin in glomerular diseases associated with nephrotic syndrome. J Am Soc Nephrol 2006; 17: 3139–48.Google Scholar
116Osicka, TM, Comper, WD. Characterization of immunochemically nonreactive urinary albumin. Clin Chem 2004. 50: 2286–91.Google Scholar
117Comper, WD, Osicka, TM, Clark, M, MacIsaac, RJ, Jerums, G. Earlier detection of microalbuminuria in diabetic patients using a new urinary albumin assay. Kid Int 2004; 65: 1850–55.Google Scholar
118Thongboonkerd, V. Proteomics in nephrology: current status and future directions. Am J Nephrology 2004; 24: 360378.CrossRefGoogle ScholarPubMed
119Klose, J, Kobalz, U. Two-dimensional electrophoresis of proteins: an updated protocol and implications for a functional analysis of the genome. Electrophoresis 1995; 16: 10341059CrossRefGoogle ScholarPubMed
120Horgan, RP, Clancy, OH, Myers, JE, Baker, PN. An overview of proteomic and metabolomic technologies and their application to pregnancy research. Br J Obstet Gynaecol 2009; 116: 173–81.Google Scholar
121Buhimschi, I, Zhao, G, Funai, E, Harris, N, Sasson, I, Bernstein, I et al. Proteomic profiling of urine identifies specific fragments of SERPINA1 and albumin as biomarkers of preeclampsia. Am J Obstet Gynecol 2008: 199: 551.e1–16.Google Scholar