Skip to main content Accessibility help
×
Home
Hostname: page-component-888d5979f-l84fh Total loading time: 0.667 Render date: 2021-10-27T20:47:18.417Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

TYPE 1 DIABETES IN PREGNANCY; INFLUENCES ON MOTHER AND FETUS

Published online by Cambridge University Press:  01 February 2009

SCOTT M NELSON*
Affiliation:
Reproductive and Maternal Medicine, University of Glasgow, 10 Alexandra Parade, Glasgow G31 2ER.
ROBERT S LINDSAY
Affiliation:
BHF Glasgow Cardiovascular Research Centre, University of Glasgow, 126 University Place, Glasgow, G12 8TA
*
Professor Scott M Nelson, Reproductive and Maternal Medicine, Division of Developmental Medicine, University of Glasgow, Glasgow Royal Infirmary, 10 Alexandra Parade, Glasgow, G31 ER, UK

Extract

Type 1 diabetes complicates around 1 in 200 to 300 pregnancies in the United Kingdom. Historically maternal type 1 diabetes carried very high risks for mother and child. Introduction of insulin led to an immediate, marked decline in the previously very high rates of maternal mortality; in contrast an improvement in perinatal outcomes occurred more slowly but was nevertheless dramatic. This is strikingly demonstrated by the temporal decline in perinatal mortality in offspring of mothers with type 1 diabetes which was virtually universal before use of insulin in the 1920's, likely remained in excess of 20% even in the 1960's and fell to under 4% by the 1990's. The reasons for this more gradual improvement in perinatal outcomes cannot be defined with precision but will have been influenced by improved glycaemic management with use of intensive, multiple dose insulin treatment and home glucose monitoring; improvements in obstetric and neonatal management, and better management of complications of diabetes before and during pregnancy. In 1989 the St Vincent declaration proposed that pregnancy outcomes in women with type 1 diabetes should approximate those of the non-diabetic population. While the long term improvements in fetal outcomes have been dramatic, contemporary surveys confirm a persistent doubling or more of rates of congenital anomaly and a three to four fold increase in perinatal mortality in the UK and other European countries which will require further clinical innovation to overcome.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Macintosh, MC, Fleming, KM, Bailey, JA, Doyle, P, Modder, J, Acolet, D, et al. Perinatal mortality and congenital anomalies in babies of women with type 1 or type 2 diabetes in England, Wales, and Northern Ireland: population based study. Br Med J 2006; 333: 177. Epub 2006 Jun 16.CrossRefGoogle ScholarPubMed
2Penney, GC, Mair, G, Pearson, DW. Outcomes of pregnancies in women with type 1 diabetes in Scotland: a national population-based study. BJOG 2003; 110: 315318.CrossRefGoogle ScholarPubMed
3Reece, EA, Gabbe, SG. The History of Diabetes Mellitus. In: Reece, EA, Coustan, DR, Gabbe, SG, (eds). Diabetes in Women. Philadelphia: Lippincott Williams & Wilkins, 2004: 1–8.Google Scholar
4Coustan, DR. Perinatal Mortality and Morbidity. In: Reece, EA, Coustan, DR, Gabbe, SG, (eds). Diabetes in Women. Philadelphia: Lippincott Williams & Wilkins, 2004: 205–210.Google Scholar
5Johnstone, FD, Lindsay, RS, Steel, J. Type 1 diabetes and pregnancy: trends in birth weight over 40 years at a single clinic. Obstet Gynecol 2006; 107: 1297–302.CrossRefGoogle Scholar
6Diabetes care and research in Europe: the Saint Vincent declaration. Diabet Med 1990; 7: 360.CrossRefGoogle Scholar
7Hawthorne, G, Robson, S, Ryall, EA, Sen, D, Roberts, SH, Ward Platt, MP. Prospective population based survey of outcome of pregnancy in diabetic women: results of the Northern Diabetic Pregnancy Audit, 1994. Br Med J 1997; 315: 279–81.CrossRefGoogle Scholar
8Casson, IF, Clarke, CA, Howard, CV, McKendrick, O, Pennycook, S, Pharoah, PO, et al. Outcomes of pregnancy in insulin dependent diabetic women: results of a five year population cohort study. Br Med J 1997; 315: 275–78.CrossRefGoogle ScholarPubMed
9Evers, IM, de Valk, HW, Visser, GH. Risk of complications of pregnancy in women with type 1 diabetes: nationwide prospective study in the Netherlands. Br Med J 2004; 328: 915.CrossRefGoogle ScholarPubMed
10Boulot, P, Chabbert-Buffet, N, d'Ercole, C, Floriot, M, Fontaine, P, Fournier, A, et al. French multicentric survey of outcome of pregnancy in women with pregestational diabetes. Diabetes Care 2003; 26: 2990–993.Google ScholarPubMed
11Jensen, DM, Damm, P, Moelsted-Pedersen, L, Ovesen, P, Westergaard, JG, Moeller, M, et al. Outcomes in type 1 diabetic pregnancies: a nationwide, population-based study. Diabetes Care 2004; 27: 2819–823.CrossRefGoogle ScholarPubMed
12Platt, MJ, Stanisstreet, M, Casson, IF, Howard, CV, Walkinshaw, S, Pennycook, S, et al. St Vincent's declaration 10 years on: outcomes of diabetic pregnancies. Diabet Med 2002; 19: 216–20.CrossRefGoogle ScholarPubMed
13Metzger, BE, Lowe, LP, Dyer, AR, Trimble, ER, Chaovarindr, U, Coustan, DR, et al. Hyperglycemia and adverse pregnancy outcomes. N Engl J Med 2008; 358: 19912002.Google ScholarPubMed
14Nielsen, GL, Moller, M, Sorensen, HT. HbA1c in Early Diabetic Pregnancy and Pregnancy Outcomes: A Danish population-based cohort study of 573 pregnancies in women with type 1 diabetes. Diabetes Care 2006; 29: 2612–616.CrossRefGoogle ScholarPubMed
15Chang, AS, Dale, AN, Moley, KH. Maternal Diabetes Adversely Affects Preovulatory Oocyte Maturation, Development, and Granulosa Cell Apoptosis. Endocrinology 2005; 146: 2445–453.CrossRefGoogle ScholarPubMed
16Kim, K, Chung Hoon, K, Moley, KH, Cheon, YP. Disordered Meiotic Regulation of Oocytes by Duration of Diabetes Mellitus in BBdp Rat. Reproductive Sciences 2007; 14: 467–74.CrossRefGoogle ScholarPubMed
17Powers, RW, Chambers, C, Larsen, WJ. Diabetes-mediated decreases in ovarian superoxide dismutase activity are related to blood-follicle barrier and ovulation defects. Endocrinology 1996; 137: 3101–110.CrossRefGoogle ScholarPubMed
18Garris, DR, Williams, SK, West, L. Morphometric evaluation of diabetes-associated ovarian atrophy in the C57BL/KsJ mouse: relationship to age and ovarian function. Anat Rec 1985; 211: 434–43.CrossRefGoogle ScholarPubMed
19Diamond, MP, Lavy, G, Polan, ML. Progesterone production from granulosa cells of individual human follicles derived from diabetic and nondiabetic subjects. Int J Fertil 1989; 34: 204208.Google ScholarPubMed
20Jungheim, ES, Moley, KH. The impact of type 1 and type 2 diabetes mellitus on the oocyte and the preimplantation embryo. Semin Reprod Med 2008; 26: 186–95.CrossRefGoogle ScholarPubMed
21Moley, KH, Chi, MM, Mueckler, MM. Maternal hyperglycemia alters glucose transport and utilization in mouse preimplantation embryos. Am J Physiol 1998; 275: E38E47.Google ScholarPubMed
22Kan, O, Baldwin, SA, Whetton, AD. Apoptosis is regulated by the rate of glucose transport in an interleukin 3 dependent cell line. J Exp Med 1994; 180: 917–23.CrossRefGoogle Scholar
23Moley, KH, Chi, MM, Knudson, CM, Korsmeyer, SJ, Mueckler, MM. Hyperglycemia induces apoptosis in pre-implantation embryos through cell death effector pathways. Nat Med 1998; 4: 1421–424.CrossRefGoogle ScholarPubMed
24Heilig, CW, Saunders, T, Brosius, FC, III, Moley, K, Heilig, K, Baggs, R, et al. Glucose transporter-1-deficient mice exhibit impaired development and deformities that are similar to diabetic embryopathy. Proc Natl Acad Sci U S A 2003; 100: 15613–5618.CrossRefGoogle ScholarPubMed
25Pantaleon, M, Harvey, MB, Pascoe, WS, James, DE, Kaye, PL. Glucose transporter GLUT3: ontogeny, targeting, and role in the mouse blastocyst. Proc Natl Acad Sci U S A 1997; 94: 3795–800.CrossRefGoogle ScholarPubMed
26Yeshaya, A, Orvieto, R, Dicker, D, Karp, M, Ben Rafael, Z. Menstrual characteristics of women suffering from insulin-dependent diabetes mellitus. Int J Fertil Menopausal Stud 1995; 40: 269–73.Google ScholarPubMed
27Kjaer, K, Hagen, C, Sando, SH, Eshoj, O. Epidemiology of menarche and menstrual disturbances in an unselected group of women with insulin-dependent diabetes mellitus compared to controls. J Clin Endocrinol Metab 1992; 75: 524–29.Google Scholar
28Steel, JM, Johnstone, SD, Corrie, JE. Early assessment of gestation in diabetics. Lancet 1984; 2: 975–76.CrossRefGoogle ScholarPubMed
29Kjaer, K, Hagen, C, Sando, SH, Eshoj, O. Infertility and pregnancy outcome in an unselected group of women with insulin-dependent diabetes mellitus. Am J Obstet Gynecol 1992; 166: 1412–418.CrossRefGoogle Scholar
30Jonasson, JM, Brismar, K, Sparen, P, Lambe, M, Nyren, O, Ostenson, CG, et al. Fertility in women with type 1 diabetes: A population-based cohort study in Sweden. Diabetes Care 2007; 30: 2271–276.CrossRefGoogle ScholarPubMed
31Mills, JL, Simpson, JL, Driscoll, SG, Jovanovic-Peterson, L, Van Allen, M, Aarons, JH, et al. Incidence of spontaneous abortion among normal women and insulin-dependent diabetic women whose pregnancies were identified within 21 days of conception. N Engl J Med 1988; 319: 1617–623.CrossRefGoogle ScholarPubMed
32Jovanovic, L, Knopp, RH, Kim, H, Cefalu, WT, Zhu, XD, Lee, YJ, et al. Elevated pregnancy losses at high and low extremes of maternal glucose in early normal and diabetic pregnancy: Evidence for a protective adaptation in diabetes. Diabetes Care 2005; 28: 1113–117.CrossRefGoogle ScholarPubMed
33Temple, RC, Aldridge, VJ, Murphy, HR. Prepregnancy care and pregnancy outcomes in women with type 1 diabetes. Diabetes Care 2006; 29: 1744–749.CrossRefGoogle ScholarPubMed
34Dicker, D, Feldberg, D, Samuel, N, Yeshaya, A, Karp, M, Goldman, JA. Spontaneous abortion in patients with insulin-dependent diabetes mellitus: the effect of preconceptional diabetic control. Am J Obstet Gynecol 1988; 158: 1161–164.CrossRefGoogle ScholarPubMed
35Suhonen, L, Hiilesmaa, V, Teramo, K. Glycaemic control during early pregnancy and fetal malformations in women with type I diabetes mellitus. Diabetologia 2000; 43: 7982.CrossRefGoogle ScholarPubMed
36Guerin, A, Nisenbaum, R, Ray, JG. Use of maternal GHb concentration to estimate the risk of congenital anomalies in the offspring of women with prepregnancy diabetes. Diabetes Care 2007; 30: 1920–925.CrossRefGoogle ScholarPubMed
37Loffredo, CA, Wilson, PD, Ferencz, C. Maternal diabetes: an independent risk factor for major cardiovascular malformations with increased mortality of affected infants. Teratology 2001; 64: 98106.CrossRefGoogle ScholarPubMed
38Kitzmiller, JL, Gavin, LA, Gin, GD, Jovanovic-Peterson, L, Main, EK, Zigrang, WD. Preconception care of diabetes. Glycemic control prevents congenital anomalies. JAMA 1991; 265: 731–36.CrossRefGoogle ScholarPubMed
39Wentzel, P, Gareskog, M, Eriksson, UJ. Folic acid supplementation diminishes diabetes- and glucose-induced dysmorphogenesis in rat embryos in vivo and in vitro. Diabetes 2005; 54: 546–53.CrossRefGoogle ScholarPubMed
40Cardell, BS. The infants of diabetic mothers; a morphological study. J Obstet Gynaecol Br Emp 1953; 60: 834–53.CrossRefGoogle ScholarPubMed
41Farquhar, JW. The child of the diabetic woman. Arch Dis Child 1959; 34: 7696.CrossRefGoogle Scholar
42Pedersen, J. Weight and length at birth in infants of diabetic mothers. Acta Endocrinologica 1954; 16: 330–42.Google ScholarPubMed
43Freinkel, N. Banting Lecture 1980. Of pregnancy and progeny. Diabetes 1980; 29: 10231035.CrossRefGoogle ScholarPubMed
44Evers, IM, de Valk, HW, Mol, BW, ter Braak, EW, Visser, GH. Macrosomia despite good glycaemic control in Type I diabetic pregnancy; results of a nationwide study in The Netherlands. Diabetologia 2002; 45: 1484–489.Google ScholarPubMed
45Johnstone, FD, Mao, JH, Steel, JM, Prescott, RJ, Hume, R. Factors affecting fetal weight distribution in women with type I diabetes. BJOG 2000; 107: 10011006.CrossRefGoogle ScholarPubMed
46Raychaudhuri, K, Maresh, MJ. Glycemic control throughout pregnancy and fetal growth in insulin-dependent diabetes. Obstet Gynecol 2000; 95: 190–94.Google ScholarPubMed
47Lindsay, RS, Hamilton, BA, Calder, AA, Johnstone, FD, Walker, JD. The relation of insulin, leptin and IGF-1 to birthweight in offspring of women with type 1 diabetes. Clin Endocrinol 2004; 61: 353–59.CrossRefGoogle ScholarPubMed
48Hattersley, AT, Tooke, JE. The fetal insulin hypothesis: an alternative explanation of the association of low birthweight with diabetes and vascular disease. Lancet 1999; 353: 1789–792.CrossRefGoogle ScholarPubMed
49Efstratiadis, A. Genetics of mouse growth. Int J Dev Biol 1998; 42: 955–76.Google ScholarPubMed
50Lindsay, RS, Walker, JD, Halsall, I, Hales, CN, Calder, AA, Hamilton, BA, et al. Insulin and insulin propeptides at birth in offspring of diabetic mothers. J Clin Endocrinol Metab 2003; 88: 1664–671.CrossRefGoogle ScholarPubMed
51Roberts, CT, Owens, JA, Sferruzzi-Perri, AN. Distinct actions of insulin-like growth factors (IGFs) on placental development and fetal growth: lessons from mice and guinea pigs. Placenta 2008; 29 Suppl A: S42-S47.CrossRefGoogle ScholarPubMed
52Lindsay, RS, Hamilton, BA, Calder, AA, Johnstone, FD, Walker, JD. The relation of insulin, leptin and IGF-1 to birthweight in offspring of women with type 1 diabetes. Clin Endocrinol 2004; 61: 353–59.CrossRefGoogle ScholarPubMed
53Forhead, AJ, Lamb, CA, Franko, KL, O'Connor, DM, Wooding, FBP, Cripps, RL, et al. Role of leptin in the regulation of growth and carbohydrate metabolism in the ovine fetus during late gestation. J Physiol 2008; 586: 2393–403.CrossRefGoogle ScholarPubMed
54Lepercq, J, Challier, JC, Guerre-Millo, M, Cauzac, M, Vidal, H, Hauguel-de Mouzon, S. Prenatal Leptin Production: Evidence That Fetal Adipose Tissue Produces Leptin. J Clin Endocrinol Metab 2001; 86: 2409–413.CrossRefGoogle ScholarPubMed
55Lindsay, RS, Walker, JD, Havel, PJ, Hamilton, BA, Calder, AA, Johnstone, FD. Adiponectin is present in cord blood but is unrelated to birth weight. Diabetes Care 2003; 26: 2244–249.CrossRefGoogle ScholarPubMed
56Persson, B, Hanson, U. Fetal size at birth in relation to quality of blood glucose control in pregnancies complicated by pregestational diabetes mellitus. Br J Obstet Gynaecol 1996; 103: 427–33.CrossRefGoogle ScholarPubMed
57Hadden, DR. Prediabetes and the big baby. Diabet Med 2008; 25: 110.CrossRefGoogle ScholarPubMed
58Hahn, T, Barth, S, Weiss, U, Mosgoeller, W, Desoye, G. Sustained hyperglycemia in vitro down-regulates the GLUT1 glucose transport system of cultured human term placental trophoblast: a mechanism to protect fetal development? FASEB J 1998; 12: 1221–231.CrossRefGoogle ScholarPubMed
59Hahn, T, Hahn, D, Blaschitz, A, Korgun, ET, Desoye, G, Dohr, G. Hyperglycaemia-induced subcellular redistribution of GLUT1 glucose transporters in cultured human term placental trophoblast cells. Diabetologia 2000; 43: 173–80.CrossRefGoogle ScholarPubMed
60Wilkening, RB, Battaglia, FC, Meschia, G. The relationship of umbilical glucose uptake to uterine blood flow. J Dev Physiol 1985; 7: 313–19.Google ScholarPubMed
61Gu, W, Jones, CT, Harding, JE. Metabolism of glucose by fetus and placenta of sheep. The effects of normal fluctuations in uterine blood flow. J Dev Physiol 1987; 9: 369–89.Google ScholarPubMed
62Hay, WW Jr, DiGiacomo, JE, Meznarich, HK, Hirst, K, Zerbe, G. Effects of glucose and insulin on fetal glucose oxidation and oxygen consumption. Am J Physiol 1989; 256: E704E713.Google ScholarPubMed
63Ben Haroush, A, Yogev, Y, Hod, M. Fetal weight estimation in diabetic pregnancies and suspected fetal macrosomia. J Perinat Med 2004; 32: 113–21.Google ScholarPubMed
64Meizner, I, Mashiach, R. Sonography in diabetic pregnancies. In: Hod, M, Jovanovic, L, Di Renzo, GC, De Leiva, A, Langer, O, (eds). Textbook of Diabetes and Pregnancy. London: Informa Healthcare, 2008; 253–64.Google Scholar
65Kernaghan, D, Ola, B, Fraser, RB, Farrell, T, Owen, P. Fetal size and growth velocity in the prediction of the large for gestational age (LGA) infant in a glucose impaired population. Eur J Obstet Gynecol Reprod Biol 2007; 132: 189–92.CrossRefGoogle Scholar
66Benacerraf, BR, Gelman, R, Frigoletto, FD Jr. Sonographically estimated fetal weights: accuracy and limitation. Am J Obstet Gynecol 1988; 159: 1118–121.CrossRefGoogle ScholarPubMed
67Smith, GC, Smith, MF, McNay, MB, Fleming, JE. The relation between fetal abdominal circumference and birthweight: findings in 3512 pregnancies. Br J Obstet Gynaecol 1997; 104: 186–90.CrossRefGoogle ScholarPubMed
68Penney, GC, Mair, G, Pearson, DW. Outcomes of pregnancies in women with type 1 diabetes in Scotland: a national population-based study. BJOG 2003; 110: 315–18.CrossRefGoogle ScholarPubMed
69Vaarasmaki, MS, Hartikainen, A, Anttila, M, Pramila, S, Koivisto, M. Factors predicting peri- and neonatal outcome in diabetic pregnancy. Early Hum Dev 2000; 59: 6170.CrossRefGoogle ScholarPubMed
70Lauenborg, J, Mathiesen, E, Ovesen, P, Westergaard, JG, Ekbom, P, Molsted-Pedersen, L, et al. Audit on stillbirths in women with pregestational type 1 diabetes. Diabetes Care 2003; 26: 1385–389.CrossRefGoogle ScholarPubMed
71Smith, GC. Predicting antepartum stillbirth. Curr Opin Obstet Gynecol 2006; 18: 625–30.CrossRefGoogle ScholarPubMed
72Cundy, T, Gamble, G, Neale, L, Elder, R, McPherson, P, Henley, P, et al. Differing causes of pregnancy loss in type 1 and type 2 diabetes. Diabetes Care 2007; 30: 2603–607.CrossRefGoogle ScholarPubMed
73Burton, GJ, Jauniaux, E. Placental oxidative stress: from miscarriage to preeclampsia. J Soc Gynecol Investig 2004; 11: 342–52.CrossRefGoogle ScholarPubMed
74Dudley, DJ. Diabetic-associated stillbirth: incidence, pathophysiology, and prevention. Clin Perinatol 2007; 34: 611–26, vii.CrossRefGoogle Scholar
75Widness, JA, Teramo, KA, Clemons, GK, Voutilainen, P, Stenman, UH, McKinlay, SM, et al. Direct relationship of antepartum glucose control and fetal erythropoietin in human Type 1 (insulin-dependent) diabetic pregnancy. Diabetologia 1990; 33: 378–83.CrossRefGoogle ScholarPubMed
76Bradley, RJ, Brudenell, JM, Nicolaides, KH. Fetal acidosis and hyperlacticaemia diagnosed by cordocentesis in pregnancies complicated by maternal diabetes mellitus. Diabet Med 1991; 8: 464–68.CrossRefGoogle ScholarPubMed
77Mimouni, F, Miodovnik, M, Siddiqi, TA, Berk, MA, Wittekind, C, Tsang, RC. High spontaneous premature labor rate in insulin-dependent diabetic pregnant women: an association with poor glycemic control and urogenital infection. Obstet Gynecol 1988; 72: 175–80.Google ScholarPubMed
78Foad, SL, Mehlman, CT, Ying, J. The epidemiology of neonatal brachial plexus palsy in the united states. J Bone Joint Surg Am 2008; 90: 1258–264.CrossRefGoogle ScholarPubMed
79Mollberg, M, Hagberg, H, Bager, B, Lilja, H, Ladfors, L. High birthweight and shoulder dystocia: the strongest risk factors for obstetrical brachial plexus palsy in a Swedish population-based study. Acta Obstet Gynecol Scand 2005; 84: 654–59.Google Scholar
80Conway, DL. Choosing route of delivery for the macrosomic infant of a diabetic mother: Cesarean section versus vaginal delivery. J Matern Fetal Neonatal Med 2002; 12: 442–48.CrossRefGoogle ScholarPubMed
81Hankins, GD, Clark, SM, Munn, MB. Cesarean section on request at 39 weeks: impact on shoulder dystocia, fetal trauma, neonatal encephalopathy, and intrauterine fetal demise. Semin Perinatol 2006; 30: 276–87.CrossRefGoogle ScholarPubMed
82Davey, DA, MacGillivray, I. The classification and definition of the hypertensive disorders of pregnancy. Am J Obstet Gynecol 1988; 158: 892–98.CrossRefGoogle ScholarPubMed
83Duckitt, K, Harrington, D. Risk factors for pre-eclampsia at antenatal booking: systematic review of controlled studies. Br Med J 2005; 330: 565.CrossRefGoogle ScholarPubMed
84Sibai, BM, Caritis, S, Hauth, J, Lindheimer, M, VanDorsten, JP, MacPherson, C, et al. Risks of preeclampsia and adverse neonatal outcomes among women with pregestational diabetes mellitus. National Institute of Child Health and Human Development Network of Maternal-Fetal Medicine Units. Am J Obstet Gynecol 2000; 182: 364–69.CrossRefGoogle ScholarPubMed
85Hanson, U, Persson, B. Epidemiology of pregnancy-induced hypertension and preeclampsia in type 1 (insulin-dependent) diabetic pregnancies in Sweden. Acta Obstet Gynecol Scand 1998; 77: 620–24.CrossRefGoogle ScholarPubMed
86Hiilesmaa, V, Suhonen, L, Teramo, K. Glycaemic control is associated with pre-eclampsia but not with pregnancy-induced hypertension in women with type I diabetes mellitus. Diabetologia 2000; 43: 1534–539.CrossRefGoogle Scholar
87Temple, RC, Aldridge, V, Stanley, K, Murphy, HR. Glycaemic control throughout pregnancy and risk of pre-eclampsia in women with type I diabetes. BJOG 2006; 113: 1329–332.CrossRefGoogle ScholarPubMed
88Spencer, K, Cowans, NJ, Chefetz, I, Tal, J, Meiri, H. First-trimester maternal serum PP-13, PAPP-A and second-trimester uterine artery Doppler pulsatility index as markers of pre-eclampsia. Ultrasound Obstet Gynecol 2007; 29: 128–34.CrossRefGoogle ScholarPubMed
89Smith, GC, Shah, I, Crossley, JA, Aitken, DA, Pell, JP, Nelson, SM, et al. Pregnancy-associated plasma protein A and alpha-fetoprotein and prediction of adverse perinatal outcome. Obstet Gynecol 2006; 107: 161–66.CrossRefGoogle ScholarPubMed
90Huppertz, B. Placental Origins of Preeclampsia: Challenging the Current Hypothesis. Hypertension 2008; 51: 970–75.CrossRefGoogle ScholarPubMed
91Redman, CW, Sargent, IL. Pre-eclampsia, the placenta and the maternal systemic inflammatory response–a review. Placenta 2003; 24 Suppl A: S21S27.CrossRefGoogle ScholarPubMed
92Nelson, SM, Freeman, DJ, Sattar, N, Lindsay, RS. Role of adiponectin in matching of fetal and placental weight in mothers with type 1 diabetes. Diabetes Care 2008; 31: 1123–125.CrossRefGoogle ScholarPubMed
93Duley, L, Henderson-Smart, DJ, Meher, S, King, JF. Antiplatelet agents for preventing pre-eclampsia and its complications. Cochrane Database Syst Rev 2007; (2): CD004659.Google Scholar
94Caritis, S, Sibai, B, Hauth, J, Lindheimer, MD, Klebanoff, M, Thom, E, et al. Low-dose aspirin to prevent preeclampsia in women at high risk. N Engl J Med 1998; 338: 701705.CrossRefGoogle ScholarPubMed
95Jovanovic-Peterson, L, Peterson, CM, Reed, GF, Metzger, BE, Mills, JL, Knopp, RH, et al. Maternal postprandial glucose levels and infant birth weight: the Diabetes in Early Pregnancy Study. The National Institute of Child Health and Human Development–Diabetes in Early Pregnancy Study. Am J Obstet Gynecol 1991; 164: 103–11.CrossRefGoogle Scholar
96Combs, CA, Gunderson, E, Kitzmiller, JL, Gavin, LA, Main, EK. Relationship of fetal macrosomia to maternal postprandial glucose control during pregnancy. Diabetes Care 1992; 15: 1251–257.CrossRefGoogle ScholarPubMed
97Carver, TD, Anderson, SM, Aldoretta, PW, Hay, WW Jr. Effect of low-level basal plus marked “pulsatile” hyperglycemia on insulin secretion in fetal sheep. Am J Physiol 1996; 271: E865E871.Google ScholarPubMed
98Kerssen, A, de Valk, HW, Visser, GH. Day-to-day glucose variability during pregnancy in women with Type 1 diabetes mellitus: glucose profiles measured with the Continuous Glucose Monitoring System. BJOG 2004; 111: 919–24.CrossRefGoogle ScholarPubMed
99Kerssen, A, de Valk, HW, Visser, GH. Do HbA1c levels and the self-monitoring of blood glucose levels adequately reflect glycaemic control during pregnancy in women with type 1 diabetes mellitus? Diabetologia 2006; 49: 2528.CrossRefGoogle ScholarPubMed
100Parretti, E, Mecacci, F, Papini, M, Cioni, R, Carignani, L, Mignosa, M, et al. Third-trimester maternal glucose levels from diurnal profiles in nondiabetic pregnancies: correlation with sonographic parameters of fetal growth. Diabetes Care 2001; 24: 1319–323.CrossRefGoogle ScholarPubMed
101de Veciana, M, Major, CA, Morgan, MA, Asrat, T, Toohey, JS, Lien, JM, et al. Postprandial versus preprandial blood glucose monitoring in women with gestational diabetes mellitus requiring insulin therapy. N Engl J Med 1995; 333: 1237–241.CrossRefGoogle ScholarPubMed
102Manderson, JG, Patterson, CC, Hadden, DR, Traub, AI, Ennis, C, McCance, DR. Preprandial versus postprandial blood glucose monitoring in type 1 diabetic pregnancy: a randomized controlled clinical trial. Am J Obstet Gynecol 2003; 189: 507–12.CrossRefGoogle ScholarPubMed
103Murphy, HR, Rayman, G, Lewis, K, Kelly, S, Johal, B, Duffield, K, et al. Effectiveness of continuous glucose monitoring in pregnant women with diabetes: randomised clinical trial. Br Med J 2008; 337: a1680.CrossRefGoogle ScholarPubMed
104Evers, IM, ter Braak, EW, de Valk, HW, Van Der, SB, Janssen, N, Visser, GH. Risk indicators predictive for severe hypoglycemia during the first trimester of type 1 diabetic pregnancy. Diabetes Care 2002; 25: 554–59.CrossRefGoogle ScholarPubMed
105Gough, SC. A review of human and analogue insulin trials. Diabetes Res Clin Pract 2007; 77: 115.CrossRefGoogle ScholarPubMed
106Kurtzhals, P, Schaffer, L, Sorensen, A, Kristensen, C, Jonassen, I, Schmid, C, et al. Correlations of receptor binding and metabolic and mitogenic potencies of insulin analogs designed for clinical use. Diabetes 2000; 49: 9991005.CrossRefGoogle ScholarPubMed
107Menon, RK, Cohen, RM, Sperling, MA, Cutfield, WS, Mimouni, F, Khoury, JC. Transplacental passage of insulin in pregnant women with insulin-dependent diabetes mellitus. Its role in fetal macrosomia. N Engl J Med 1990; 323: 309–15.CrossRefGoogle ScholarPubMed
108Lindsay, RS, Ziegler, AG, Hamilton, BA, Calder, AA, Johnstone, FD, Walker, JD. Type 1 diabetes-related antibodies in the fetal circulation: prevalence and influence on cord insulin and birth weight in offspring of mothers with type 1 diabetes. J Clin Endocrinol Metab 2004; 89: 3436–439.CrossRefGoogle ScholarPubMed
109Kitzmiller, JL, Main, E, Ward, B, Theiss, T, Peterson, DL. Insulin lispro and the development of proliferative diabetic retinopathy during pregnancy. Diabetes Care 1999; 22: 874–76.CrossRefGoogle ScholarPubMed
110Loukovaara, S, Immonen, I, Teramo, KA, Kaaja, R. Progression of retinopathy during pregnancy in type 1 diabetic women treated with insulin lispro. Diabetes Care 2003; 26: 1193–198.CrossRefGoogle ScholarPubMed
111Masson, EA, Patmore, JE, Brash, PD, Baxter, M, Caldwell, G, Gallen, IW, et al. Pregnancy outcome in Type 1 diabetes mellitus treated with insulin lispro (Humalog). Diabet Med 2003; 20: 4650.CrossRefGoogle Scholar
112Mathiesen, ER, Kinsley, B, Amiel, SA, Heller, S, McCance, D, Duran, S, et al. Maternal glycemic control and hypoglycemia in type 1 diabetic pregnancy: a randomized trial of insulin aspart versus human insulin in 322 pregnant women. Diabetes Care 2007; 30: 771–76.CrossRefGoogle ScholarPubMed
113McCance, DR, Damm, P, Mathiesen, ER, Hod, M, Kaaja, R, Dunne, F, et al. Evaluation of insulin antibodies and placental transfer of insulin aspart in pregnant women with type 1 diabetes mellitus. Diabetologia 2008; 51: 2141–143.CrossRefGoogle ScholarPubMed
114Jovanovic, L, Ilic, S, Pettitt, DJ, Hugo, K, Gutierrez, M, Bowsher, RR, et al. Metabolic and immunologic effects of insulin lispro in gestational diabetes. Diabetes Care 1999; 22: 1422–427.CrossRefGoogle ScholarPubMed
115Gallen, IW, Jaap, A, Roland, JM, Chirayath, HH. Survey of glargine use in 115 pregnant women with Type 1 diabetes. Diabet Med 2008; 25: 165–69.CrossRefGoogle ScholarPubMed
116Mukhopadhyay, A, Farrell, T, Fraser, RB, Ola, B. Continuous subcutaneous insulin infusion vs intensive conventional insulin therapy in pregnant diabetic women: a systematic review and metaanalysis of randomized, controlled trials. Am J Obstet Gynecol 2007; 197: 447–56.CrossRefGoogle ScholarPubMed
117Dandona, P, Bolger, JP, Boag, F, Fonesca, V, Abrams, JD. Rapid development and progression of proliferative retinopathy after strict diabetic control. Br Med J 1985; 290: 895–96.CrossRefGoogle ScholarPubMed
118The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. The Diabetes Control and Complications Trial Research Group. N Engl J Med 1993; 329: 977–86.Google Scholar
119Rosenn, B, Miodovnik, M, Kranias, G, Khoury, J, Combs, CA, Mimouni, F, et al. Progression of diabetic retinopathy in pregnancy: association with hypertension in pregnancy. Am J Obstet Gynecol 1992; 166: 1214–218.CrossRefGoogle ScholarPubMed
120Carr, DB, Koontz, GL, Gardella, C, Holing, EV, Brateng, DA, Brown, ZA, et al. Diabetic nephropathy in pregnancy: suboptimal hypertensive control associated with preterm delivery. Am J Hypertens 2006; 19: 513–19.CrossRefGoogle ScholarPubMed
121Dunne, FP, Chowdhury, TA, Hartland, A, Smith, T, Brydon, PA, McConkey, C, et al. Pregnancy outcome in women with insulin-dependent diabetes mellitus complicated by nephropathy. QJM 1999; 92: 451–54.CrossRefGoogle ScholarPubMed
122Ekbom, P, Damm, P, Feldt-Rasmussen, B, Feldt-Rasmussen, U, Molvig, J, Mathiesen, ER. Pregnancy outcome in type 1 diabetic women with microalbuminuria. Diabetes Care 2001; 24: 1739–744.CrossRefGoogle ScholarPubMed
123Quan, A. Fetopathy associated with exposure to angiotensin converting enzyme inhibitors and angiotensin receptor antagonists. Early Hum Dev 2006; 82: 2328.CrossRefGoogle ScholarPubMed
124Cooper, WO, Hernandez-Diaz, S, Arbogast, PG, Dudley, JA, Dyer, S, Gideon, PS, et al. Major congenital malformations after first-trimester exposure to ACE inhibitors. N Engl J Med 2006; 354: 2443–451.CrossRefGoogle ScholarPubMed
125Bowen, ME, Ray, WA, Arbogast, PG, Ding, H, Cooper, WO. Increasing exposure to angiotensin-converting enzyme inhibitors in pregnancy. Am J Obstet Gynecol 2008; 198: 291.CrossRefGoogle ScholarPubMed
126Hod, M, van Dijk, DJ, Karp, M, Weintraub, N, Rabinerson, D, Bar, J, et al. Diabetic nephropathy and pregnancy: the effect of ACE inhibitors prior to pregnancy on fetomaternal outcome. Nephrol Dial Transplant 1995; 10: 2328–333.CrossRefGoogle ScholarPubMed
127Nielsen, LR, Damm, P, Mathiesen, ER. Improved pregnancy outcome In type 1 diabetic women with microalbuminuria or diabetic nephropathy – effect of intensified antihypertensive therapy? Diabetes Care 2009; 32: 3844.CrossRefGoogle ScholarPubMed
128Laing, SP, Swerdlow, AJ, Slater, SD, Burden, AC, Morris, A, Waugh, NR, et al. Mortality from heart disease in a cohort of 23,000 patients with insulin-treated diabetes. Diabetologia 2003; 46: 760–65.CrossRefGoogle Scholar
129Leguizamon, GF, Reece, EA. Diabetic Neuropathy and Coronary Heart Disease. In: Reece, EA, Coustan, DR, Gabbe, SG, editors. Diabetes in Women. Philadelphia: Lippincott, Willliams & Wilkins, 2004: 425–32.Google Scholar
130Mondestin, MAJ, Ananth, CV, Smulian, JC, Vintzileos, AM. Birth weight and fetal death in the United States: The effect of maternal diabetes during pregnancy. Am J Obstet Gynecol 2002; 187: 922–26.CrossRefGoogle ScholarPubMed
131Robert, MF, Neff, RK, Hubbell, JP, Taeusch, HW, Avery, ME. Association between maternal diabetes and the respiratory-distress syndrome in the newborn. N Engl J Med 1976; 294: 357–60.CrossRefGoogle ScholarPubMed
132Piazze, JJ, Anceschi, MM, Maranghi, L, Brancato, V, Marchiani, E, Cosmi, EV. Fetal lung maturity in pregnancies complicated by insulin-dependent and gestational diabetes: a matched cohort study. Eur J Obstet Gynecol Reprod Biol 1999; 83: 145–50.CrossRefGoogle ScholarPubMed
133Kjos, SL, Berkowitz, KM, Kung, B. Prospective delivery of reliably dated term infants of diabetic mothers without determination of fetal lung maturity: comparison to historical control. J Matern Fetal Neonatal Med 2002; 12: 433–37.CrossRefGoogle ScholarPubMed
134Smith, BT, Giroud, CJ, Robert, M, Avery, ME. Insulin antagonism of cortisol action on lechithin synthesis by cultured fetal lung cells. J Pediatr 1975; 87: 953–55.Google ScholarPubMed
135Engle, MJ, Langan, SM, Sanders, RL. The effects of insulin and hyperglycemia on surfactant phospholipid synthesis in organotypic cultures of type II pneumocytes. Biochim Biophys Acta 1983; 753: 613.CrossRefGoogle ScholarPubMed
136Pinter, E, Peyman, JA, Snow, K, Jamieson, JD, Warshaw, JB. Effects of maternal diabetes on fetal rat lung ion transport. Contribution of alveolar and bronchiolar epithelial cells to Na+,K(+)-ATPase expression. J Clin Invest 1991; 87: 821–30.CrossRefGoogle ScholarPubMed
137Bhavnani, BR, Enhorning, G, Ekelund, L, Wallace, D, Pan, CC. Maternal diabetes and its effect on biochemical and functional development of rabbit fetal lung. Biochem Cell Biol 1988; 66: 396404.CrossRefGoogle ScholarPubMed
138Iafusco, D, Stoppoloni, F, Salvia, G, Vernetti, G, Passaro, P, Petrovski, G, et al. Use of real time continuous glucose monitoring and intravenous insulin in type 1 diabetic mothers to prevent respiratory distress and hypoglycaemia in infants. BMC Pregnancy Childbirth 2008; 8: 23.CrossRefGoogle ScholarPubMed
139Stenninger, E, Lindqvist, A, Aman, J, Ostlund, I, Schvarcz, E. Continuous Subcutaneous Glucose Monitoring System in diabetic mothers during labour and postnatal glucose adaptation of their infants. Diabet Med 2008; 25: 450–54.CrossRefGoogle ScholarPubMed
140Morrison, JJ, Rennie, JM, Milton, PJ. Neonatal respiratory morbidity and mode of delivery at term: influence of timing of elective caesarean section. Br J Obstet Gynaecol 1995; 102: 101106.CrossRefGoogle ScholarPubMed
141Stutchfield, P, Whitaker, R, Russell, I. Antenatal betamethasone and incidence of neonatal respiratory distress after elective caesarean section: pragmatic randomised trial. Br Med J 2005; 331: 662.CrossRefGoogle ScholarPubMed
142Mathiesen, ER, Christensen, AB, Hellmuth, E, Hornnes, P, Stage, E, Damm, P. Insulin dose during glucocorticoid treatment for fetal lung maturation in diabetic pregnancy: test of an algorithm [correction of analgoritm]. Acta Obstet Gynecol Scand 2002; 81: 835–39.CrossRefGoogle Scholar
143Roberts, D, Dalziel, S. Antenatal corticosteroids or accelerating fetal lung maturation for women at risk of preterm birth. Cochrane Database Syst Rev 2006; 3: CD004454.CrossRefGoogle Scholar
144Lucas, A, Morley, R, Cole, TJ. Adverse neurodevelopmental outcome of moderate neonatal hypoglycaemia. Br Med J 1988; 297: 1304–308.CrossRefGoogle ScholarPubMed
145Kline, GA, Edwards, A. Antepartum and intra-partum insulin management of type 1 and type 2 diabetic women: Impact on clinically significant neonatal hypoglycemia. Diabetes Res Clin Pract 2007; 77: 223–30.CrossRefGoogle ScholarPubMed
146Taylor, R, Lee, C, Kyne-Grzebalski, D, Marshall, SM, Davison, JM. Clinical outcomes of pregnancy in women with type 1 diabetes. Obstet Gynecol 2002; 99: 537–41.Google ScholarPubMed
147Persson, B, Hanson, U. Neonatal morbidities in gestational diabetes mellitus. Diabetes Care 1998; 21 Suppl 2: B79B84.Google ScholarPubMed
148Burns, CM, Rutherford, MA, Boardman, JP, Cowan, FM. Patterns of cerebral injury and neurodevelopmental outcomes after symptomatic neonatal hypoglycemia. Pediatrics 2008; 122: 6574.CrossRefGoogle ScholarPubMed
149Stenninger, E, Flink, R, Eriksson, B, Sahlen, C. Long term neurological dysfunction and neonatal hypoglycaemia after diabetic pregnancy. Arch Dis Child Fetal Neonatal Ed 1998; 79: F174F179.CrossRefGoogle ScholarPubMed
150Mimouni, F, Miodovnik, M, Siddiqi, TA, Butler, JB, Holroyde, J, Tsang, RC. Neonatal polycythemia in infants of insulin-dependent diabetic mothers. Obstet Gynecol 1986; 68: 370–72.CrossRefGoogle ScholarPubMed
151Evers, IM, Nikkels, PG, Sikkema, JM, Visser, GH. Placental pathology in women with type 1 diabetes and in a control group with normal and large-for-gestational-age infants. Placenta 2003; 24: 819–25.CrossRefGoogle Scholar
152Widness, JA, Susa, JB, Garcia, JF, Singer, DB, Sehgal, P, Oh, W, et al. Increased erythropoiesis and elevated erythropoietin in infants born to diabetic mothers and in hyperinsulinemic rhesus fetuses. J Clin Invest 1981; 67: 637–42.CrossRefGoogle ScholarPubMed
153Shannon, K, Davis, JC, Kitzmiller, JL, Fulcher, SA, Koenig, HM. Erythropoiesis in infants of diabetic mothers. Pediatr Res 1986; 20: 161–65.CrossRefGoogle ScholarPubMed
154Salvesen, DR, Nicolaides, K. Findings from cordocentesis in diabetic pregnancies. In: Dornhost, A, Hadden, DR, (eds). Diabetes and Pregnancy: An International Approach to Diagnosis and Management. London: Wiley, 1996; 207–20.Google Scholar
155Salvesen, DR, Brudenell, JM, Snijders, RJ, Ireland, RM, Nicolaides, KH. Fetal plasma erythropoietin in pregnancies complicated by maternal diabetes mellitus. Am J Obstet Gynecol 1993; 168: 8894.CrossRefGoogle ScholarPubMed
156Nelson, SM, Sattar, N, Freeman, DJ, Walker, JD, Lindsay, RS. Inflammation and endothelial activation is evident at birth in offspring of mothers with type 1 diabetes. Diabetes 2007; 56: 2697–704.CrossRefGoogle ScholarPubMed
157Halvorsen, S, Bechensteen, AG. Physiology of erythropoietin during mammalian development. Acta Paediatr Suppl 2002; 91: 1726.CrossRefGoogle ScholarPubMed
158Fantuzzi, G, Faggioni, R. Leptin in the regulation of immunity, inflammation, and hematopoiesis. J Leukoc Biol 2000; 68: 437–46.Google ScholarPubMed
159Axelsson, J, Qureshi, AR, Heimburger, O, Lindholm, B, Stenvinkel, P, Barany, P. Body fat mass and serum leptin levels influence epoetin sensitivity in patients with ESRD. Am J Kidney Dis 2005; 46: 628–34.CrossRefGoogle ScholarPubMed
160Sawada, K, Krantz, SB, Dessypris, EN, Koury, ST, Sawyer, ST. Human colony-forming units-erythroid do not require accessory cells, but do require direct interaction with insulin-like growth factor I and/or insulin for erythroid development. J Clin Invest 1989; 83: 1701–709.CrossRefGoogle ScholarPubMed
161Watchko, JF. Kernicterus and the molecular mechanisms of bilirubin-induced CNS injury in newborns. Neuromolecular Med 2006; 8: 513–29.CrossRefGoogle ScholarPubMed
162Jaeggi, ET, Fouron, JC, Proulx, F. Fetal cardiac performance in uncomplicated and well-controlled maternal type I diabetes. Ultrasound Obstet Gynecol 2001; 17: 311–15.CrossRefGoogle ScholarPubMed
163Girsen, A, Ala-Kopsala, M, Makikallio, K, Vuolteenaho, O, Rasanen, J. Increased fetal cardiac natriuretic peptide secretion in type-1 diabetic pregnancies. Acta Obstet Gynecol Scand 2008; 87: 307–12.CrossRefGoogle ScholarPubMed
164Lindegaard, ML, Nielsen, LB. Maternal diabetes causes coordinated down-regulation of genes involved with lipid metabolism in the murine fetal heart. Metabolism 2008; 57: 766–73.CrossRefGoogle ScholarPubMed
165Lindegaard, ML, Damm, P, Mathiesen, ER, Nielsen, LB. Placental triglyceride accumulation in maternal type 1 diabetes is associated with increased lipase gene expression. J Lipid Res 2006; 47: 2581–588.CrossRefGoogle ScholarPubMed
166Nelson, SM, Freeman, DJ, Sattar, N, Johnstone, FD, Lindsay, RS. IGF-1 and leptin associate with fetal HDL-cholesterol at birth: examination in offspring of mothers with type 1 diabetes. Diabetes 2007; 56: 2705–709.CrossRefGoogle ScholarPubMed
167Dunn, V, Nixon, GW, Jaffe, RB, Condon, VR. Infants of diabetic mothers: radiographic manifestations. Am J Roentgenol 1981; 137: 123–28.CrossRefGoogle ScholarPubMed
168Davis, WS, Campbell, JB. Neonatal small left colon syndrome. Occurrence in asymptomatic infants of diabetic mothers. Am J Dis Child 1975; 129: 10241027.CrossRefGoogle ScholarPubMed
169Philippart, AI, Reed, JO, Georgeson, KE. Neonatal small left colon syndrome: Intramural not intraluminal obstruction. J Pediatr Surg 1975; 10: 733–40.CrossRefGoogle Scholar
170Kock, NG, Darle, N, Dotevall, G. Inhibition of intestinal motility in man by glucagon given intraportally. Gastroenterology 1967; 53: 8892.Google Scholar
171Pettitt, DJ, Baird, HR, Aleck, KA, Bennett, PH, Knowler, WC. Excessive obesity in offspring of Pima Indian women with diabetes during pregnancy. N Engl J Med 1983; 308: 242–45.CrossRefGoogle ScholarPubMed
172Pettitt, DJ, Aleck, KA, Baird, HR, Carraher, MJ, Bennett, PH, Knowler, WC. Congenital susceptibility to NIDDM. Role of intrauterine environment. Diabetes 1988; 37: 622–28.CrossRefGoogle ScholarPubMed
173Dabelea, D, Knowler, WC, Pettitt, DJ. Effect of diabetes in pregnancy on offspring: follow-up research in the Pima Indians. J Matern Fetal Med 2000; 9: 8388.Google ScholarPubMed
174Vohr, BR, McGarvey, ST, Tucker, R. Effects of maternal gestational diabetes on offspring adiposity at 4–7 years of age. Diabetes Care 1999; 22: 1284–291.CrossRefGoogle ScholarPubMed
175Hillier, TA, Pedula, KL, Schmidt, MM, Mullen, JA, Charles, MA, Pettitt, DJ. Childhood Obesity and Metabolic Imprinting: The ongoing effects of maternal hyperglycemia. Diabetes Care 2007; 30: 2287–292.CrossRefGoogle ScholarPubMed
176Silverman, BL, Rizzo, TA, Cho, NH, Metzger, BE. Long-term effects of the intrauterine environment. The Northwestern University Diabetes in Pregnancy Center. Diabetes Care 1998; 21 Suppl 2: B142B149.Google Scholar
177Weiss, PA, Scholz, HS, Haas, J, Tamussino, KF, Seissler, J, Borkenstein, MH. Long-term follow-up of infants of mothers with type 1 diabetes: evidence for hereditary and nonhereditary transmission of diabetes and precursors. Diabetes Care 2000; 23: 905–11.CrossRefGoogle ScholarPubMed
178Clausen, TD, Mathiesen, ER, Hansen, T, Pedersen, O, Jensen, DM, Lauenborg, J, et al. High prevalence of type 2 diabetes and pre-diabetes in adult offspring of women with gestational diabetes mellitus or type 1 diabetes: the role of intrauterine hyperglycemia. Diabetes Care 2008; 31: 340–46.CrossRefGoogle ScholarPubMed
179Pettitt, DJ, Knowler, WC, Bennett, PH, Aleck, KA, Baird, HR. Obesity in offspring of diabetic Pima Indian women despite normal birth weight. Diabetes Care 1987; 10: 7680.CrossRefGoogle ScholarPubMed
180Dabelea, D, Hanson, RL, Lindsay, RS, Pettitt, DJ, Imperatore, G, Gabir, MM, et al. Intrauterine exposure to diabetes conveys risks for type 2 diabetes and obesity: a study of discordant sibships. Diabetes 2000; 49: 2208–211.CrossRefGoogle ScholarPubMed
181Silverman, BL, Metzger, BE, Cho, NH, Loeb, CA. Impaired glucose tolerance in adolescent offspring of diabetic mothers. Relationship to fetal hyperinsulinism. Diabetes Care 1995; 18: 611–17.CrossRefGoogle ScholarPubMed
182Silverman, BL, Landsberg, L, Metzger, BE. Fetal hyperinsulinism in offspring of diabetic mothers. Association with the subsequent development of childhood obesity. Ann N Y Acad Sci 1993; 699: 3645.CrossRefGoogle ScholarPubMed
183Hanson, RL, Elston, RC, Pettitt, DJ, Bennett, PH, Knowler, WC. Segregation analysis of non-insulin-dependent diabetes mellitus in Pima Indians: evidence for a major-gene effect. Am J Hum Genet 1995; 57: 160–70.Google ScholarPubMed
184Pettitt, DJ, Aleck, KA, Baird, HR, Carraher, MJ, Bennett, PH, Knowler, WC. Congenital susceptibility to NIDDM. Role of intrauterine environment. Diabetes 1988; 37: 622–28.CrossRefGoogle ScholarPubMed
185Gillman, MW, Rifas-Shiman, S, Berkey, CS, Field, AE, Colditz, GA. Maternal gestational diabetes, birth weight, and adolescent obesity. Pediatrics 2003; 111: e221e226.CrossRefGoogle ScholarPubMed
186Whitaker, RC, Pepe, MS, Seidel, KD, Wright, JA, Knopp, RH. Gestational diabetes and the risk of offspring obesity. Pediatrics 1998; 101: E9.CrossRefGoogle ScholarPubMed
187Plagemann, A, Harder, T, Kohlhoff, R, Rohde, W, Dorner, G. Glucose tolerance and insulin secretion in children of mothers with pregestational IDDM or gestational diabetes. Diabetologia 1997; 40: 10941100.CrossRefGoogle ScholarPubMed
188Sobngwi, E, Boudou, P, Mauvais-Jarvis, F, Leblanc, H, Velho, G, Vexiau, P, et al. Effect of a diabetic environment in utero on predisposition to type 2 diabetes. Lancet 2003; 361: 1861–865.CrossRefGoogle ScholarPubMed
189Franks, PW, Looker, HC, Kobes, S, Touger, L, Tataranni, PA, Hanson, RL, et al. Gestational glucose tolerance and risk of type 2 diabetes in young Pima Indian offspring. Diabetes 2006; 55: 460–65.CrossRefGoogle ScholarPubMed
190Barnett, AH, Eff, C, Leslie, RD, Pyke, DA. Diabetes in identical twins. A study of 200 pairs. Diabetologia 1981; 20: 8793.CrossRefGoogle ScholarPubMed
191Meigs, JB, Cupples, LA, Wilson, PW. Parental transmission of type 2 diabetes: the Framingham Offspring Study. Diabetes 2000; 49: 2201–207.CrossRefGoogle ScholarPubMed
192Stride, A, Shepherd, M, Frayling, TM, Bulman, MP, Ellard, S, Hattersley, AT. Intrauterine hyperglycemia is associated with an earlier diagnosis of diabetes in HNF-1alpha gene mutation carriers. Diabetes Care 2002; 25: 2287–291.CrossRefGoogle ScholarPubMed
193Bihoreau, MT, Ktorza, A, Kinebanyan, MF, Picon, L. Impaired glucose homeostasis in adult rats from hyperglycemic mothers. Diabetes 1986; 35: 979–84.CrossRefGoogle ScholarPubMed
194Bihoreau, MT, Ktorza, A, Kervran, A, Picon, L. Effect of gestational hyperglycemia on insulin secretion in vivo and in vitro by fetal rat pancreas. Am J Physiol 1986; 251: E86E91.Google ScholarPubMed
195Bihoreau, MT, Ktorza, A, Kinebanyan, MF, Picon, L. Impaired glucose homeostasis in adult rats from hyperglycemic mothers. Diabetes 1986; 35: 979–84.CrossRefGoogle ScholarPubMed
196Gauguier, D, Bihoreau, MT, Picon, L, Ktorza, A. Insulin secretion in adult rats after intrauterine exposure to mild hyperglycemia during late gestation. Diabetes 1991; 40 Suppl 2: 109114.CrossRefGoogle ScholarPubMed
197Gautier, JF, Wilson, C, Weyer, C, Mott, D, Knowler, WC, Cavaghan, M, et al. Low acute insulin secretory responses in adult offspring of people with early onset type 2 diabetes. Diabetes 2001; 50: 1828–833.CrossRefGoogle ScholarPubMed
198Hultquist, GT, Olding, LB. Pancreatic-islet fibrosis in young infants of diabetic mothers. Lancet 1975; 2: 10151016.CrossRefGoogle ScholarPubMed
199Nelson, L, Turkel, S, Shulman, I, Gabbe, S. Pancreatic-islet fibrosis in young infants of diabetic mothers. Lancet 1977; 310: 362–63.CrossRefGoogle Scholar
200Tuomilehto, J, Podar, T, Tuomilehto-Wolf, E, Virtala, E. Evidence for importance of gender and birth cohort for risk of IDDM in offspring of IDDM parents. Diabetologia 1995; 38: 975–82.CrossRefGoogle ScholarPubMed
201Harjutsalo, V, Reunanen, A, Tuomilehto, J. Differential transmission of type 1 diabetes from diabetic fathers and mothers to their offspring. Diabetes 2006; 55: 1517–524.CrossRefGoogle ScholarPubMed
202el Hashimy, M, Angelico, MC, Martin, BC, Krolewski, AS, Warram, JH. Factors modifying the risk of IDDM in offspring of an IDDM parent. Diabetes 1995; 44: 295–99.CrossRefGoogle ScholarPubMed
203Tillil, H, Kobberling, J. Age-corrected empirical genetic risk estimates for first-degree relatives of IDDM patients. Diabetes 1987; 36: 9399.CrossRefGoogle ScholarPubMed
204Lorenzen, T, Pociot, F, Hougaard, P, Nerup, J. Long-term risk of IDDM in first-degree relatives of patients with IDDM. Diabetologia 1994; 37: 321–27.CrossRefGoogle ScholarPubMed
205Warram, JH, Krolewski, AS, Gottlieb, MS, Kahn, CR. Differences in risk of insulin-dependent diabetes in offspring of diabetic mothers and diabetic fathers. N Engl J Med 1984; 311: 149–52.CrossRefGoogle ScholarPubMed
206Koczwara, K, Bonifacio, E, Ziegler, AG. Transmission of maternal islet antibodies and risk of autoimmune diabetes in offspring of mothers with type 1 diabetes. Diabetes 2004; 53: 14.CrossRefGoogle ScholarPubMed
207Holm, BC, Svensson, J, Akesson, C, Arvastsson, J, Ljungberg, J, Lynch, K, et al. Evidence for immunological priming and increased frequency of CD4+ CD25+ cord blood T cells in children born to mothers with type 1 diabetes. Clin Exp Immunol 2006; 146: 493502.CrossRefGoogle ScholarPubMed
208Manderson, JG, Mullan, B, Patterson, CC, Hadden, DR, Traub, AI, McCance, DR. Cardiovascular and metabolic abnormalities in the offspring of diabetic pregnancy. Diabetologia 2002; 45: 991–96.CrossRefGoogle ScholarPubMed
209Sheyl Ezg, F, Hasanolu, A, Tmer, L, zbay, F, Aybay, C, Gndz, M. Endothelial activation and inflammation in prepubertal obese Turkish children. Metabolism 2005; 54: 1384–389.CrossRefGoogle Scholar
210Valle, M, Martos, R, Gascon, F, Canete, R, Zafra, MA, Morales, R. Low-grade systemic inflammation, hypoadiponectinemia and a high concentration of leptin are present in very young obese children, and correlate with metabolic syndrome. Diabetes Metab 2005; 31: 5562.CrossRefGoogle Scholar
211Lambert, M, Delvin, EE, Paradis, G, O'Loughlin, J, Hanley, JA, Levy, E. C-Reactive Protein and Features of the Metabolic Syndrome in a Population-Based Sample of Children and Adolescents. Clin Chem 2004; 50: 1762–768.CrossRefGoogle Scholar
212Correia, ML, Haynes, WG. A role for plasminogen activator inhibitor-1 in obesity: from pie to PAI? Arterioscler Thromb Vasc Biol 2006; 26: 2183–185.CrossRefGoogle ScholarPubMed
213Duncan, BB, Schmidt, MI, Pankow, JS, Ballantyne, CM, Couper, D, Vigo, A, et al. Low-Grade Systemic Inflammation and the Development of Type 2 Diabetes: The Atherosclerosis Risk in Communities Study. Diabetes 2003; 52: 1799–805.CrossRefGoogle ScholarPubMed
214Freeman, DJ, Norrie, J, Caslake, MJ, Gaw, A, Ford, I, Lowe, GDO, et al. C-Reactive protein is an independent predictor of risk for the development of diabetes in the west of Scotland Coronary Prevention Study. Diabetes 2002; 51: 1596–600.CrossRefGoogle ScholarPubMed
215Pradhan, AD, Manson, JE, Rifai, N, Buring, JE, Ridker, PM. C-reactive protein, interleukin 6, and risk of developing type 2 diabetes mellitus. JAMA 2001; 286: 327–34.CrossRefGoogle ScholarPubMed
216Festa, A, D'Agostino, RB, Tracy, RP, Haffner, SM. Elevated levels of acute phase proteins and plasminogen activator inhibitor- 1 (PAI-1) predict the development of type 2 diabetes mellitus: the insulin resistance atherosclerosis study (IRAS). Diabetes 2002; 51: 1131–137.CrossRefGoogle Scholar
217Meigs, JB, Hu, FB, Rifai, N, Manson, JE. Biomarkers of endothelial dysfunction and risk of type 2 diabetes mellitus. JAMA 2004; 291: 1978–986.CrossRefGoogle ScholarPubMed
218Juonala, M, Viikari, JSA, Ronnemaa, T, Taittonen, L, Marniemi, J, Raitakari, OT. Childhood C-Reactive protein in predicting CRP and carotid intima-media thickness in adulthood: The cardiovascular risk in young finns study. Arterioscler Thromb Vasc Biol 2006; 26: 1883–888.CrossRefGoogle ScholarPubMed
219Ridker, PM, Hennekens, CH, Roitman-Johnson, B, Stampfer, MJ, Allen, J. Plasma concentration of soluble intercellular adhesion molecule 1 and risks of future myocardial infarction in apparently healthy men. Lancet 1998; 351: 8892.CrossRefGoogle ScholarPubMed
220Bunt, JC, Tataranni, PA, Salbe, AD. Intrauterine Exposure to Diabetes Is a Determinant of Hemoglobin A1c and Systolic Blood Pressure in Pima Indian Children. J Clin Endocrinol Metab 2005; 90: 3225–229.CrossRefGoogle Scholar
221Cho, NH, Silverman, BL, Rizzo, TA, Metzger, BE. Correlations between the intrauterine metabolic environment and blood pressure in adolescent offspring of diabetic mothers. J Pediatr 2000; 136: 587–92.CrossRefGoogle ScholarPubMed
222Nelson, RG, Morgenstern, H, Bennett, PH. Intrauterine diabetes exposure and the risk of renal disease in diabetic Pima Indians. Diabetes 1998; 47: 1489–493.CrossRefGoogle ScholarPubMed
223Nehiri, T, Duong Van Huyen, J-P, Viltard, M, Fassot, C, Heudes, D, Freund, N, et al. Exposure to maternal diabetes induces salt-sensitive hypertension and impairs renal function in adult rat offspring. Diabetes 2008; 57: 2167–175.CrossRefGoogle ScholarPubMed
224Magaton, A, Gil, F, Casarini, D, Cavanal, MdF, Gomes, G. Maternal diabetes mellitus – early consequences for the offspring. Pediatric Nephrology 2007; 22: 3743.CrossRefGoogle ScholarPubMed
225Rocha, SO, Gomes, GN, Forti, AL, do Carmo Pinho Franco, M, Fortes, ZB, Fatima Cavanal, M, et al. Long-term effects of maternal diabetes on vascular reactivity and renal function in rat male offspring. Pediatr Res 2005; 58: 1274–279.CrossRefGoogle ScholarPubMed
226Churchill, JA, Berendes, HW, Nemore, J. Neuropsychological deficits in children of diabetic mothers. A report from the Collaborative Sdy of Cerebral Palsy. Am J Obstet Gynecol 1969; 105: 257–68.CrossRefGoogle ScholarPubMed
227Schulte, FJ, Lasson, U, Parl, U, Nolte, R, Jurgens, U. Brain and behavioural maturation in newborn infants of diabetic mothers. II. Sleep cycles. Neuropadiatrie 1969; 1: 3643.CrossRefGoogle ScholarPubMed
228Schulte, FJ, Michaelis, R, Nolte, R, Albert, G, Parl, U, Lasson, U. Brain and behavioural maturation in newborn infants of diabetic mothers. I. Nerve conduction and EEG patterns. Neuropadiatrie 1969; 1: 2435.CrossRefGoogle ScholarPubMed
229Petersen, MB, Pedersen, SA, Greisen, G, Pedersen, JF, Molsted-Pedersen, L. Early growth delay in diabetic pregnancy: relation to psychomotor development at age 4. Br Med J 1988; 296: 598600.CrossRefGoogle ScholarPubMed
230Stehbens, JA, Baker, GL, Kitchell, M. Outcome at ages 1, 3, and 5 years of children born to diabetic women. Am J Obstet Gynecol 1977; 127: 408–13.CrossRefGoogle ScholarPubMed
231Cummins, M, Norrish, M. Follow-up of children of diabetic mothers. Arch Dis Child 1980; 55: 259–64.CrossRefGoogle ScholarPubMed
232Persson, B, Gentz, J. Follow-up of children of insulin-dependent and gestational diabetic mothers. Neuropsychological outcome. Acta Paediatr Scand 1984; 73: 349–58.CrossRefGoogle ScholarPubMed
233Ornoy, A, Ratzon, N, Greenbaum, C, Peretz, E, Soriano, D, Dulitzky, M. Neurobehaviour of school age children born to diabetic mothers. Arch Dis Child Fetal Neonatal Ed 1998; 79: F94F99.CrossRefGoogle ScholarPubMed
234Yamashita, Y, Kawano, Y, Kuriya, N, Murakami, Y, Matsuishi, T, Yoshimatsu, K, et al. Intellectual development of offspring of diabetic mothers. Acta Paediatr 1996; 85: 1192–196.CrossRefGoogle ScholarPubMed
235Hod, M, Levy-Shiff, R, Lerman, M, Schindel, B, Ben Rafael, Z, Bar, J. Developmental outcome of offspring of pregestational diabetic mothers. J Pediatr Endocrinol Metab 1999; 12: 867–72.CrossRefGoogle ScholarPubMed
236Nelson, CA, Wewerka, SS, Borscheid, AJ, Deregnier, RA, Georgieff, MK. Electrophysiologic evidence of impaired cross-modal recognition memory in 8-month-old infants of diabetic mothers. J Pediatr 2003; 142: 575–82.CrossRefGoogle ScholarPubMed
237Sells, CJ, Robinson, NM, Brown, Z, Knopp, RH. Long-term developmental follow-up of infants of diabetic mothers. J Pediatr 1994; 125: S917.CrossRefGoogle ScholarPubMed
238Kowalczyk, M, Ircha, G, Zawodniak-Szalapska, M, Cypryk, K, Wilczynski, J. Psychomotor development in the children of mothers with type 1 diabetes mellitus or gestational diabetes mellitus. J Pediatr Endocrinol Metab 2002; 15: 277–81.CrossRefGoogle ScholarPubMed
239Ornoy, A, Ratzon, N, Greenbaum, C, Wolf, A, Dulitzky, M. School-age children born to diabetic mothers and to mothers with gestational diabetes exhibit a high rate of inattention and fine and gross motor impairment. J Pediatr Endocrinol Metab 2001; 14 Suppl 1: 681–89.CrossRefGoogle ScholarPubMed
240Ornoy, A, Wolf, A, Ratzon, N, Greenbaum, C, Dulitzky, M. Neurodevelopmental outcome at early school age of children born to mothers with gestational diabetes. Arch Dis Child Fetal Neonatal Ed 1999; 81: F10F14.CrossRefGoogle ScholarPubMed
241Ratzon, N, Greenbaum, C, Dulitzky, M, Ornoy, A. Comparison of the motor development of school-age children born to mothers with and without diabetes mellitus. Phys Occup Ther Pediatr 2000; 20: 4357.CrossRefGoogle ScholarPubMed
242Rizzo, T, Metzger, BE, Burns, WJ, Burns, K. Correlations between antepartum maternal metabolism and child intelligence. N Engl J Med 1991; 325: 911–16.CrossRefGoogle Scholar
243Rizzo, TA, Dooley, SL, Metzger, BE, Cho, NH, Ogata, ES, Silverman, BL. Prenatal and perinatal influences on long-term psychomotor development in offspring of diabetic mothers. Am J Obstet Gynecol 1995; 173: 1753–758.CrossRefGoogle ScholarPubMed
244Rodekamp, E, Harder, T, Kohlhoff, R, Dudenhausen, JW, Plagemann, A. Impact of breast-feeding on psychomotor and neuropsychological development in children of diabetic mothers: role of the late neonatal period. J Perinat Med 2006; 34: 490–96.CrossRefGoogle ScholarPubMed
245Silverman, BL, Rizzo, T, Green, OC, Cho, NH, Winter, RJ, Ogata, ES, Richards, GE, Metzger, BE. Long-term prospective evaluation of offspring of diabetic mothers. Diabetes 1991; 40 Suppl 2: 121–25.CrossRefGoogle ScholarPubMed
2
Cited by