Salmonella-induced enteritis is a gastrointestinal disease that causes major economic and welfare problems throughout the world. Although the infection is generally self-limiting, subgroups of the population such as immunocompromised individuals, the young and the elderly are susceptible to developing more severe systemic infections. The emergence of widespread antibiotic resistance and the lack of a suitable vaccine against enteritis-causing Salmonella have led to a search for alternative therapeutic strategies. This review focuses on how Salmonella induces enteritis at the molecular level in terms of bacterial factors, such as the type III secretion systems used to inject a subset of bacterial proteins into host cells, and host factors, such as Toll-like receptors and cytokines. The type III secreted bacterial proteins elicit a variety of responses in host cells that contribute to enteritis. Cytokines form part of the host defence mechanism, but in combination with bacterial factors can contribute to Salmonella-induced enteritis. We also discuss animal and cell culture models currently used to study Salmonella-induced enteritis, and how understanding the mechanisms of the disease has impacted on the development of Salmonella therapeutics.