Hostname: page-component-76fb5796d-wq484 Total loading time: 0 Render date: 2024-04-25T16:18:55.463Z Has data issue: false hasContentIssue false

COWPEA (VIGNA UNGUICULATA) CROPS IN AFRICA CAN RESPOND TO INOCULATION WITH RHIZOBIUM

Published online by Cambridge University Press:  03 October 2016

ROBERT M. BODDEY*
Affiliation:
Embrapa Agrobiologia, Rodovia BR 465, km 07, Seropédica, 23891-000, RJ, Brazil
MATHIAS FOSU
Affiliation:
CSIR-Savanna Agricultural Research Institute (CSIR-SARI), P.O. Box 52, Tamale, Northern Region, Ghana
WILLIAMS K. ATAKORA
Affiliation:
CSIR-Savanna Agricultural Research Institute (CSIR-SARI), P.O. Box 52, Tamale, Northern Region, Ghana
CESAR H. B. MIRANDA
Affiliation:
Embrapa Mozambique, Av. Francisco Manyanga, 230, Nampula, Mozambique
LUCIA H. BODDEY
Affiliation:
Embrapa Agrobiologia, Rodovia BR 465, km 07, Seropédica, 23891-000, RJ, Brazil
ANA PAULA GUIMARAES
Affiliation:
Embrapa Agrobiologia, Rodovia BR 465, km 07, Seropédica, 23891-000, RJ, Brazil
BENJAMIN D. K. AHIABOR
Affiliation:
CSIR-Savanna Agricultural Research Institute (CSIR-SARI), P.O. Box 52, Tamale, Northern Region, Ghana
*
Corresponding author. Email: robert.boddey@embrapa.br; Contact address: Embrapa Agrobiologia, BR 465, km 07, Seropédica, 23891-000, RJ, Brazil.

Summary

Cowpea (Vigna unguiculata L. Walp) is the most important food grain legume in Africa. Cowpea is nodulated by rhizobium bacteria in almost all soils of the tropics, but studies performed in the 1970s and 1980s in Nigeria suggested only modest responses of grain yield in the field to inoculation of selected rhizobium strains. More recently, experiments performed in Brazil have shown that cowpea responded to inoculation of rhizobium selected locally and grain yields increased by up to 30%. We tested some of the Brazilian strains on cowpea at a site in northern Mozambique and at several sites in Northern Ghana. At all sites phosphorus fertilizer (26 kg P ha−1) was added to all plots. At the site in Mozambique despite considerable damage to the crop by the parasitic yellow witchweed (Alectra vogelii), grain yields were more than doubled by inoculation of one of the Brazilian strains and reached 1.4 Mg ha−1. In on-station experiments conducted in 2012 in June and August in northern Ghana using the local cowpea variety Padi-Tuya as the test crop, nodule weight at 35 days after planting (dap) tripled with rhizobium strain BR 3299 (530 mg plant−1) in August with the other inoculants (BR 3267 and a mixture of BR 3267 and BR 3299) also increased nodule weight to over 300 mg plant−1. In the first on-station experiment, grain yields were doubled by the inoculation of any of the three rhizobium strains, and in the second experiment, significant increases in grain yield ranged from 39% to 57% and reached over 2.0 Mg ha−1. Similar increases in nodulation and grain yield due to inoculation were observed in 22 on-farm trials. Nitrogen fertilizer application promoted vegetative growth but did not increase grain yield and nodulation. Inoculating cowpea with highly effective rhizobium strains can therefore enhance grain yield of smallholder farmers in Africa.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Adje-Nsiah, S., Kuyper, T. W., Leeuwis, C., Abekoe, M. K., Cobbinah, J., Sakyi-Dawson, O. and Giller, K.E. (2008). Farmers' agronomic and social evaluation of productivity, yield and N2-fixation in different cowpea varieties and their subsequent residual N effects on a succeeding maize crop. Nutrient Cycling in Agroecosystems, 80:199209.Google Scholar
Ahmad, M., Eaglesham, A. R. J., Hassouna, S., Seaman, B., Ayanaba, A., Mulongoy, K. and Pulver, E. L. (1981). Examining the potential for inoculant use with cowpeas in West African soils. Tropical Agriculture, 58:325335.Google Scholar
Alonge, S. O., Lagoke, C. O. and Ajakaiye, C. O. (2001). Cowpea reactions to Alectra vogelii I: Effect on growth. Crop Protection, 20:283290.CrossRefGoogle Scholar
Awonaike, K. O., Kumarasinghe, K. S. and Danso, S. K. A. (1990). Nitrogen fixation and yield of cowpea (Vigna unguiculata) as influenced by cultivar and Bradyrhizobium strain. Field Crops Research, 24:163171.CrossRefGoogle Scholar
Belane, A. K. and Dakora, F. D. (2009). Measurement of N2 fixation in 30 cowpea (Vigna unguiculata L. Walp.) Genotypes under field conditions in Ghana, using the 15N natural abundance technique. Symbiosis, 48:4756.Google Scholar
Belane, A. K. and Dakora, F. D. (2010). Photosynthesis, symbiotic N and C accumulation in leaves of 30 nodulated cowpea genotypes grown in the field at Wa in the Guinea savanna of Ghana. Field Crops Research, 124:279287.CrossRefGoogle Scholar
de Melo, S. R. and Zilli, J. E. (2009). Fixação biológica de nitrogênio em cultivares de feijão-caupi recomendadas para o Estado de Roraima. Pesquisa Agropecuária Brasileira, 44:11771183.Google Scholar
Fernandes Júnior, P. I., Rohr, T. G., Oliveira, P. J., Xavier, G. R. and Rumjanek, N. G. (2009). Polymers as carriers for rhizobial inoculant formulations. Pesquisa Agropecuária Brasileira 44:11841190.Google Scholar
Ferreira, D. F. (2011). Sisvar: um sistema computacional de análise estatística. Ciência Agrotécnica, 35:10391042.Google Scholar
Hungria, M. and Vargas, M. A. T. (2000). Environmental factors affecting N2 fixation in grain legumes in the tropics, with an emphasis on Brazil. Field Crops Research, 65:151164.CrossRefGoogle Scholar
Lacerda, A. M., Moreira, F. M. S., de Andrade, M. J. B. and Soares, A. L. d. L. (2004). Efeito de estirpes de rizóbio sobre a nodulação e produtividade do feijão caupi. Revista Ceres, 51:6782.Google Scholar
Martins, L. M. V., Xavier, G. R., Rangel, F. W., Ribeiro, J. R. A., Neves, M. C. P., Morgado, L. B. and Rumjanek, N. G. (2003). Contribution of biological nitrogen fixation to cowpea: A strategy for improving grain yield in the semi-arid region of Brazil. Biology and Fertility of Soils, 38:333339.CrossRefGoogle Scholar
Naab, J. B., Chimphango, S. B. M. and Dakora, F. D. (2009). N2 fixation in cowpea plants grown in farmers' fields in the Upper West Region of Ghana, measured using 15N natural abundance. Symbiosis, 48:3746.CrossRefGoogle Scholar
Neves, M. C. P., Didonet, A. D., Duque, F. F. and Dobereiner, J. (1985). Rhizobium strain effects on nitrogen transport and distribution in soybeans. Journal of Experimental Botany, 36:11791192.CrossRefGoogle Scholar
Nyemba, R. C. and Dakora, F. D. (2010). Evaluating N2 fixation by food grain legumes in farmers' fields in three agro-ecological zones Zambia, using 15N natural abundance. Biology and Fertility of Soils 46:461470.Google Scholar
Pulver, E. L., Kueneman, E. A. and Ranga Rao, V. (1985). Identification of promiscuous nodulating soybean efficient in N2 fixation. Crop Science, 25:660663.CrossRefGoogle Scholar
Soares, A. L. D. L., Pereira, J. P. A. R., Ferreira, P. A. A., do Vale, H. M. M., Lima, A. S., de Andrade, M. J. B. and Moreira, F. M. S. (2006). Eficiência agronômica de rizóbios selecionados e diversidade de populações nativas nodulíferas em Perdões (MG). I—Caupi. Revista Brasileira de Ciência do Solo 30:795802.Google Scholar
Summerfield, R. J., Dart, P. J., Huxley, P. A., Eaglesham, A. R. J., Minchin, F. R. and Day, J. M. (1977). Nitrogen nutrition of cowpea (Vigna unguiculata). I. Effect of applied nitrogen and symbiotic nitrogen fixation on growth and seed yield. Experimental Agriculture, 13:129142.Google Scholar
Zilli, J. E., Marson, L. C., Marson, B. F., Rumjanek, N. G. and Xavier, G. R. (2009). Contribuição de estirpes de rizóbio para o desenvolvimento e produtividade de grãos de feijão-caupi em Roraima. Acta Amazonica 39:749758.CrossRefGoogle Scholar