Hostname: page-component-7479d7b7d-m9pkr Total loading time: 0 Render date: 2024-07-12T01:45:49.088Z Has data issue: false hasContentIssue false

CARBON AND NUTRIENT LOSSES THROUGH BIOMASS BURNING, AND LINKS WITH SOIL FERTILITY AND YAM (DIOSCOREA ALATA) PRODUCTION

Published online by Cambridge University Press:  28 August 2018

AYA B. N'DRI*
Affiliation:
UFR des Sciences de la Nature, Station de Recherche en Ecologie de Lamto/CRE, Pôle de Recherche Environnement et Développement Durable (PE2D), Université Nangui Abrogoua, 02 BP 801 Abidjan 02, Abidjan, Côte d'Ivoire
ARMAND W. KONE
Affiliation:
UFR des Sciences de la Nature, Station de Recherche en Ecologie de Lamto/CRE, Pôle de Recherche Environnement et Développement Durable (PE2D), Université Nangui Abrogoua, 02 BP 801 Abidjan 02, Abidjan, Côte d'Ivoire
SEBASTIEN K. K. LOUKOU
Affiliation:
UFR des Sciences de la Nature, Station de Recherche en Ecologie de Lamto/CRE, Pôle de Recherche Environnement et Développement Durable (PE2D), Université Nangui Abrogoua, 02 BP 801 Abidjan 02, Abidjan, Côte d'Ivoire
SEBASTIEN BAROT
Affiliation:
IEES-Paris (CNRS, IRD, UPMC, INRA, UPEC), UPMC, 4 Place Jussieu, 75252 Paris cedex 05, France
JACQUES GIGNOUX
Affiliation:
IEES-Paris (CNRS, IRD, UPMC, INRA, UPEC), UPMC, 4 Place Jussieu, 75252 Paris cedex 05, France
*
Corresponding author. Email: ndri.brigitte@yahoo.fr, ndribrigitte.sn@univ-na.ci

Summary

Biomass burning has links with a number of global concerns including soil health, food security and climate change. In central Côte d'Ivoire (West Africa), we conducted a field study to compare nutrient losses, soil fertility and yam yield in slash-and-burn versus slash-and-mulch agriculture. Trials involved five sites established in the dominant Chromolaena odorata fallows of the region, each consisting of paired plots: slash and burnt biomass (SB) versus slashed and unburnt biomass, but left to serve as mulch (SM). Carbon and five elemental nutrients were assessed in the aboveground biomass prior to burning and in ash after fires; losses were assessed by subtraction. The greatest proportions of loss occurred with C (95%), N (95%) and K (74%), corresponding to losses into the atmosphere of 3532 ± 408, 200 ± 36, 132 ± 36 kg ha−1. Six weeks after the fire, soil properties were assessed: soil organic C, total N and Mg2+ were higher in SM than in SB sites. At final harvest, yam tuber yield was twice as large in SM as in SB (18 ± 4 vs. 9 ± 2 Mg ha−1) with soil C, total N and K+ as the main influential soil parameters. The key finding was that the elements lost in greatest proportion during burning were those mostly influencing yam yields. Because a clear negative relationship between biomass burning and yam production has been established the promotion of the more productive, alternate slash-and-mulch system compared to slash-and-burn system, is warranted. The findings of our research can be used in support of developing a sustainable yam production system in the region and in West Africa more generally.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Anderson, J. M. and Ingram, J. S. I. (1993). Tropical Soil Biology and Fertility: A Handbook of Methods, 2nd ed. New York: CAB international.Google Scholar
Büttner, U. and Hauser, S. (2003). Farmers’ nutrient management practices in indigenous cropping systems in southern Cameroon. Agricultural, Ecosystems and Environment 100:103110.Google Scholar
Diby, L. N., Hgaza, V. K., Tie, T. B., Assa, Y., Carsky, R., Girardin, O. and Frossard, E. (2009). Productivity of yams (Dioscorea spp.) as affected by soil fertility. Journal of Animal and Plant Sciences 5:494506.Google Scholar
Ellicott, E., Vermote, E., Giglio, L. and Roberts, G. (2009). Estimating biomass consumed from fire using MODIS FRE. Geophysical Research Letters 36:15.Google Scholar
Fernández, A. C. and Carballas, T. (1997). Organic matter changes immediately after a wildfire in an Atlantic forest soil and comparison with laboratory soil heating. Soil Biology and Biochemistry 29:111.Google Scholar
Gautier, L. (1992). Contact forêt-savane en Côte d'Ivoire centrale: Rôle de Chromolaena odorata (L.) R. King et H. Robinson dans la dynamique de la végétation. Ph.D. dissertation, 260p. Suisse: Université de Genève.Google Scholar
Gignoux, J., Clobert, J. and Menaut, J. C. (1997). Alternative fire resistance strategies in savanna trees. Oecologia 110:576583.Google Scholar
Kassi, S. P. A. Y., Koné, A. W., Tondoh, J. E. and Koffi, B. Y. (2017). Chromolaena odorata fallow-cropping cycles maintain soil carbon stocks and yam yield 40 years after conversion of native- to farm-land implications for forest conservation. Agriculture Ecosystems & Environment 247:298307.Google Scholar
Koné, A. W., Edoukou, E. F., Gonnety, T. J., N'Dri, N. A. A., Assémien, E. F. L., Angui, T. K. P. and Tondoh, E. J. (2012). Can the shrub Chromolaena odorata (Asteraceae) be considered as improving soil biology and plant nutrient availability? Agroforestry Systems 85:233245.Google Scholar
Le Roux, X. (1995). Survey and modelling of water and energy exchanges between soil, vegetation and atmosphere in a Guinea savanna. Ph.D. dissertation. Paris: Université de Paris 6.Google Scholar
Mackensen, J., Hölscher, D., Klinge, R. and Foölster, H. (1996). Nutrient transfer to the atmosphere by burning of debris in eastern Amazonia. Forest Ecology and Management 86:121128.Google Scholar
Maliki, R., Sinsin, B. and Floquet, A. (2012). Evaluating yam-based cropping systems using herbaceous leguminous plants in the savannah transitional agroecological zone of Benin. Journal of Sustainable Agriculture 36:440460.Google Scholar
Mandal, G. and Joshi, S. P. (2014). Invasion establishment and habitat suitability of Chromolaena odorata (L.) King and Robinson over time and space in the western Himalayan forests of India. Journal of Asia-Pacific Biodiversity 7:391400.Google Scholar
Minasny, B., Malone, B. P., McBratney, A. B., Angers, D. A., Arrouays, D., Chambers, A., Chaplot, V., Chen, Z.-S., Cheng, K., Das, B. S., Field, D. J, Gimona, A., Hedley, C. B., Hong, S. Y, Mandal, B., Marchant, B. P, Martin, M., McConkey, B. G., Mulder, V. L, O'Rourke, S., Richer-de-Forges, A. C, Odeh, I., Padarian, J., Paustian, K., Pan, G., Poggio, L., Savin, I., Stolbovoy, V., Stockmann, U., Sulaeman, Y., Tsui, C.-C., Vågen, T.-G., van Wesemael, B. and Winowiecki, L. (2017). Soil carbon 4 per mille. Geoderma 292:5986.Google Scholar
Murphy, J. and Riley, J. P. (1962). A modified single solution method for the determination of phosphate in natural waters. Analytica Chimica Acta 27:3136.Google Scholar
N'Dri, A. B., Soro, T. D., Gignoux, J., Dosso, K., Koné, M., Koné, N. A., N'Dri, J. K. and Barot, S. (2018). Season affects fire behavior in annually burned humid savanna of west Africa. Fire Ecology. In press.Google Scholar
Nelson, D. W. and Sommers, L. E. (1982). Total carbon organic carbon and organic matter. In Methods of Soil Analysis, Part 2, 539579 (Eds Page, A. L., Miller, R. H. and Keeny, D. R.). Agronomy monograph, no. 9. Madison: ASA/SSSA.Google Scholar
Norgrove, L. and Hauser, S. (2015). Estimating the consequences of fire exclusion for food crop production soil fertility and fallow recovery in shifting cultivation landscapes in the humid tropics. Environmental Management 55:536549.Google Scholar
O'Sullivan, J. N. and Ernest, J. (2007). Nutrient deficiencies in lesser yam (Dioscorea esculenta) characterized using constant–water table sand culture. Journal of Plant Nutrition and Soil Science 170:273282.Google Scholar
R Development Core Team. (2014). R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing.Google Scholar
Riou, G. (1974). Les sols de la savane de Lamto. Bulletin de Liaison des Chercheurs de Lamto 1:345.Google Scholar
Rossiter-Rachor, N. A., Setterfield, S. A., Douglas, M. M., Hutley, L. B. and Cook, G. D. (2008). Andropogon gayanus (Gamba Grass) invasion increases fire-mediated nitrogen losses in the tropical savannas of Northern Australia. Ecosystems 11:7788.Google Scholar
Slaats, J. P. P. (1995). Chromolaena odorata fallow in food cropping systems: An assessment in South-West Ivory Coast. Ph.D. dissertation, University of Wageningen, Netherlands.Google Scholar
Thurston, H. D. (1997). Slash/Mulch Systems Sustainable Methods for Tropical Agriculture. Boulder: Westview Press. Available at: https://wwwamazoncom/Slash-mulch-Systems-Sustainable-Agriculture/dp/Google Scholar
Villecourt, P., Schmidt, W. and Cesar, J. (1980). Perte d'un écosystème à l'occasion du feu de brousse (savane tropicale de Lamto cote d'Ivoire). Revue d'Ecologie et Biologie du sol 17:712.Google Scholar
Williams, R. J., Hallgren, S. W. and Wilson, G. W. T. (2012). Frequency of prescribed burning in an upland oak forest determines soil and litter properties and alters the soil microbial community. Forest Ecology and Management 265:241247.Google Scholar
Witkowski, E. T. F. and Wilson, M. (2001). Changes in density, biomass, seed production and soil seed banks of the non-native invasive plant, Chromolaena odorata, along a 15 year chronosequence. Plant Ecology 152:1327.Google Scholar
Supplementary material: File

N'dri et al. supplementary material

Figure S1

Download N'dri et al. supplementary material(File)
File 946.5 KB