Hostname: page-component-8448b6f56d-gtxcr Total loading time: 0 Render date: 2024-04-24T05:41:29.731Z Has data issue: false hasContentIssue false

From Neolithic Boom-and-Bust to Iron Age Peak and Decline: Population and Settlement Dynamics in Southern Sweden Inferred from Summed Radiocarbon Dates

Published online by Cambridge University Press:  07 October 2022

Bo Friman
Affiliation:
The Archaeologists, National Historical Museums, Lund, Sweden
Per Lagerås
Affiliation:
The Archaeologists, National Historical Museums, Lund, Sweden

Abstract

This article presents 6637 radiocarbon dates from archaeological sites in southernmost Sweden, from 9000 cal bc to the present. Based on summed probability distributions (SPDs) of the calibrated radiocarbon dates, the authors consider long-term trends in settlement and human population. Most dates are from the fertile and densely populated plains of south-western Scania, but coastal lowlands and forested uplands are also represented, allowing for a discussion of the relationship between central and peripheral areas. The authors distinguish between different types of archaeological contexts and features and between different types of dated material, so as to better understand the processes behind population and settlement change. They highlight three periods and phenomena revealed by the SPDs: a strong population increase at the onset of the Neolithic (4000–3700 cal bc), followed by a sharp decline; a steady and long-lasting expansion from the Early Bronze Age to the Roman Iron Age (1500 cal bc–cal ad 200); and a decrease in the Nordic Late Iron Age (seventh century ad), particularly in recently colonized upland areas. The SPDs presented provide a new framework for archaeology in southern Sweden and offer an empirical basis for discussion of long-term trends in settlement and population development.

Cet article présente 6637 datations radiocarbone provenant de sites archéologiques du sud de la Suède datant de 9000 cal bc à nos jours. Les auteurs évaluent, sur la base de la distribution des probabilités cumulées (summed probability distribution, SPD) des dates radiocarbone calibrées, les tendances à long terme concernant la population et l'occupation de la région. Les dates proviennent majoritairement des plaines fertiles et peuplées du sud-ouest de la Scanie mais les régions côtières et les hautes terres boisées sont aussi représentées, ce qui permet de comparer les zones centrales aux régions périphériques. Les auteurs distinguent entre différents types de contextes archéologiques et entre différents types de matériel afin de mieux appréhender les processus gouvernant les fluctuations de la population et de l'habitat. Ils relèvent trois périodes et phénomènes révélés par la distribution des probabilités cumulées : une forte croissance démographique au début du Néolithique (4000–3700 cal bc), suivi d'une nette régression ; une expansion régulière et durable entre l’âge du Bronze Ancien et l’âge du Fer romain (1500 cal bc–cal ad 200) et un déclin à l’âge du Fer récent (VIIe siècle de notre ère), surtout dans les hautes terres récemment colonisées. La distribution des probabilités cumulées situe l'archéologie de la Suède méridionale dans un nouveau cadre et offre une base de discussion empirique des tendances à long terme concernant la population et l'occupation de cette région. Translation by Madeleine Hummler

In diesem Artikel werden 6637 Radiokarbonbestimmungen zwischen 9000 cal bc und heute aus archäologischen Fundstätten in Südschweden zusammengefasst. Auf der Basis von summierten Wahrscheinlichkeitsverbreitungen (summed probability distribution, SPD) der kalibrierten Radiokarbondaten besprechen die Verfasser langfristige Tendenzen in der Bevölkerung und Besiedlung der Gegend. Die meisten Daten stammen aus den fruchtbaren und dicht bevölkerten Ebenen Südwestschonens, aber Küsten- und bewaldete Hügel-Landschaften sind auch vertreten, was einen Vergleich zwischen Zentralzonen und Randbereiche ermöglicht. Die Verfasser unterscheiden zwischen verschiedenen archäologischen Kontexten und verschiedenen datierten Materialien, um die Prozesse hinter den Veränderungen in der Bevölkerung und Besiedlung besser zu verstehen. Sie hervorheben drei in den summierten Wahrscheinlichkeitsverbreitungen dokumentierten Perioden und Phänomene: ein deutlicher Bevölkerungszuwachs am Anfang des Neolithikums (um 4000–3700 cal bc) und danach eine starke Abnahme; eine stetige und dauerhafte Zunahme zwischen der Frühbronzezeit und der römischen Eisenzeit (1500 cal bc–cal ad 200); und eine Abnahme in der nordischen Späteisenzeit (im 7. Jahrhundert n. Chr.), besonders in vor Kurzem kolonisierten Hochlandschaften. Die summierten Wahrscheinlichkeitsverbreitungen stellen einen neuen Rahmen für die Archäologie Südschwedens dar und bieten eine empirische Basis für die Diskussion der langfristigen Tendenzen in der Bevölkerung und Besiedlung der Gegend. Translation by Madeleine Hummler

Type
Article
Copyright
Copyright © The Author(s), 2022. Published by Cambridge University Press on behalf of the European Association of Archaeologists

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andersson, M. 2004. Making Place in the Landscape: Early and Middle Neolithic Societies in Two West Scanian Valleys. Stockholm: Riksantikvarieämbetet.Google Scholar
Armit, I., Swindles, G.T. & Becker, K. 2013. From Dates to Demography in Later Prehistoric Ireland? Experimental Approaches to the Meta-Analysis of Large 14C Data-Sets. Journal of Archaeological Science, 40: 433–38. https://doi.org/10.1016/j.jas.2012.08.039CrossRefGoogle Scholar
Berggren, Å. 2018. Pilbladet 1: tidigneolitiska flintgruvor (Rapport 2018:29). Malmö: Sydsvensk Arkeologi.Google Scholar
Berglund, B.E. 1969. Vegetation and Human Influence in South Scandinavia During Prehistoric Time. Oikos (Supplement), 12: 928.Google Scholar
Berglund, B.E. ed. 1991. The Cultural Landscape During 6000 Years in Southern Sweden: The Ystad Project (Ecological Bulletins 41). Copenhagen: Munksgaard.Google Scholar
Berglund, B.E. 2003. Human Impact and Climate Changes: Synchronous Events and a Causal Link? Quaternary International, 105: 712. https://doi.org/10.1016/s1040-6182(02)00144-1CrossRefGoogle Scholar
Berglund, B.E., Larsson, L., Lewan, N., Olsson, E.G.A. & Skansjö, S. 1991. Ecological and Social Factors Behind the Landscape Changes. In: Berglund, B.E., ed. The Cultural Landscape during 6000 Years in Southern Sweden: The Ystad Project (Ecological Bulletins 41). Copenhagen: Munksgaard, pp. 425–45.Google Scholar
Bergsvik, K.A., Darmark, K., Hjelle, K.L., Aksdal, J. & Åstveit, L.I. 2021. Demographic Developments in Stone Age Coastal Western Norway by Proxy of Radiocarbon Dates, Stray Finds and Palynological Data. Quaternary Science Reviews, 259: 106898. https://doi.org/10.1016/j.quascirev.2021.106898CrossRefGoogle Scholar
Bevan, A., Colledge, S., Fuller, D., Fyfe, R., Shennan, S. & Stevens, C. 2017. Holocene Fluctuations in Human Population Demonstrate Repeated Links to Food Production and Climate. Proceedigs of the National Academy of Sciences, 114: E10524E10531. https://doi.org/10.1073/pnas.1709190114Google ScholarPubMed
Björk, T. 1998. Härdar på rad: om spåren efter en kultplats från bronsåldern. Fornvännen, 93: 7379.Google Scholar
Brink, K., Kishonti, I. & Magnell, O. 2009. On the Shore. Current Swedish Archaeology, 17: 79107.CrossRefGoogle Scholar
Bronk Ramsey, C. 2017. Methods for Summarizing Radiocarbon Datasets. Radiocarbon, 59: 1809–33. https://doi.org/10.1017/RDC.2017.108Google Scholar
Browall, H. 2016. Alvastra pålbyggnad: 1976–1980 års utgrävningar. Västra schaktet (Kungl. Vitterhets Historie och antikvitets akademien, Handlingar, antikvariska serien, 52). Stockholm: Kungl. Vitterhets Historie och antikvitets akademien.Google Scholar
Büntgen, U., Myglan, V.S., Ljungqvist, F.C., McCormick, M., Di Cosmo, N., Sigl, M., et al. 2016. Cooling and Societal Change During the Late Antique Little Ice Age From 536 to Around 660 ad. Nature Geoscience, 9: 231–36. https://doi.org/10.1038/ngeo2652CrossRefGoogle Scholar
Collard, M., Edinborough, K., Shennan, S. & Thomas, M.G. 2010. Radiocarbon Evidence Indicates That Migrants Introduced Farming to Britain. Journal of Archaeological Science, 37: 866–70. https://doi.org/10.1016/j.jas.2009.11.016CrossRefGoogle Scholar
Crema, E.R. & Bevan, A. 2021. Inference From Large Sets of Radiocarbon Dates: Software and Methods. Radiocarbon, 63: 2339. https://doi.org/10-1017/RDC.2020.95CrossRefGoogle Scholar
Crema, E.R., Habu, J., Kobayashi, K. & Madella, M. 2016. Summed Probability Distribution of 14C Dates Suggests Regional Divergences in the Population Dynamics of the Jomon Period in Eastern Japan. PLoS One, 11: e0154809. https://doi.org/10.1371/journal.pone.0154809CrossRefGoogle ScholarPubMed
Diamond, J. 2005. Collapse: How Societies Choose to Fail or Succeed. New York: Viking.Google Scholar
Downey, S.S., Bocaege, E., Kerig, T., Edinborough, K. & Shennan, S. 2014. The Neolithic Demographic Transition in Europe: Correlation with Juvenility Index Supports Interpretation of the Summed Calibrated Radiocarbon Date Probability Distribution (SCDPD) as a Valid Demographic Proxy. PLoS One, 9: e105730. https://doi.org/10.1371/journal.pone.0105730CrossRefGoogle ScholarPubMed
Ethelberg, P. 2003. Gården og landsbyen i jernalder og vikingetid (500 f.Kr.-1000 e.Kr.). In: Ethelberg, P., Hardt, N., Poulsen, B. & Sørensen, A.B., eds. Det sønderjyske landbrugs historie: Jernalder, vikingetid og middelalder. Haderslev: Haderslev Museum, pp. 123374.Google Scholar
Fredh, E.D., Lagerås, P., Mazier, F., Björkman, L., Lindbladh, M. & Broström, A. 2019. Farm Establishment, Abandonment and Agricultural Practices During the Last 1,300 Years: A Case Study from Southern Sweden Based on Pollen Records and the LOVE Model. Vegetation History and Archaeobotany, 28: 529–44. https://doi.org/10.1007/s00334-019-00712-xCrossRefGoogle Scholar
Friman, B. 2008. Att stå på egna ben: centrala funktioner och lokal utveckling under yngre bronsålder och äldre järnålder i Mellanbyn, Skåne (Malmöfynd 18). Malmö: Malmö Kulturmiljö.Google Scholar
Göransson, H. 1988. Neolithic Man and the Forest Environment Around Alvastra Pile Dwelling (Theses and Papers in North-European Archaeology 20). Lund: Lund University Press.Google Scholar
Göransson, H. 1991. Vegetation and Man around Lake Bjärsjöholmssjön During Prehistoric Time (Lundqua Report 31). Lund: Department of Quaternary Geology, Lund University.Google Scholar
Göransson, H. 1995. Alvastra Pile Dwelling: Palaeoethnobotanical Studies (Theses and Papers in Archaeology N.S. A6). Lund: Lund University Press.Google Scholar
Göthberg, H. 2007. Mer än bara hus och gårdar. In: Göthberg, H., ed. Hus och bebyggelse i Uppland (Arkeologi E4 i Uppland, Studier 3). Uppsala: Upplands Museum, pp. 403–47.Google Scholar
Gräslund, B. & Price, N. 2012. Twilight of the Gods? The ‘Dust Veil Event’ of ad 536 in Critical Perspective. Antiquity, 86: 428–43.CrossRefGoogle Scholar
Harbeck, M., Seifert, L., Hänsch, S., Wagner, D.M., Birdsell, D., et al. 2013. Yersinia Pestis DNA from Skeletal Remains From the 6th Century AD Reveals Insights into Justinianic Plague. PLoS Pathogens, 9(5): e1003349. https://doi.org/10.1371/journal.ppat.1003349CrossRefGoogle ScholarPubMed
Hellman, S. 2008. Validating and Testing the Landscape Reconstruction Algorithm in Southern Sweden: Towards Quantitative Reconstruction of Past Vegetation (PhD dissertation, School of Pure and Applied Natural Sciences, Kalmar University).Google Scholar
Hinz, M. 2015. Growth and Decline? Population Dynamics of Funnel Beaker Societies in the 4th Millenium bc. In: Brink, K., Hydén, S., Jennbert, K., Larsson, L. & Olausson, D., eds. Neolithic Diversities: Perspectives From a Conference in Lund, Sweden (Acta Archaeologica Lundensia, series in 8° 65). Lund: Department of Archaeology and Ancient History, Lund University, pp. 4351.Google Scholar
Hinz, M., Feeser, I., Sjögren, K.G. & Müller, J. 2012. Demography and the Intensity of Cultural Activities: An Evaluation of Funnel Beaker Societies (4200–2800 cal bc). Journal of Archaeological Science, 39: 3331–40. https://doi.org/10.1016/j.jas.2012.05.028CrossRefGoogle Scholar
Jonsson, E. 2005. Öresundsförbindelsen, rapport över arkeologisk slutundersökning, Rapport 8: Skjutbanorna 1A (English summary: Features, Finds and Dating). Malmö: Malmö Kulturmiljö.Google Scholar
Lagerås, P. 1996. Farming and Forest Dynamics in an Agriculturally Marginal Area of Southern Sweden, 5000 bc to Present: A Palynological Study of Lake Avegöl in the Småland Uplands. The Holocene, 6: 301–14. https://doi.org/10.1177/095968369600600305CrossRefGoogle Scholar
Lagerås, P. 2007. The Ecology of Expansion and Abandonment: Medieval and Post-Medieval Land-Use and Settlement Dynamics in a Landscape Perspective. Stockholm: Riksantikvarieämbetet.Google Scholar
Lagerås, P. 2013. Agrara fluktuationer och befolkningsutveckling på sydsvenska höglandet tolkade utifrån röjningsrösen. Fornvännen, 108: 263–77.Google Scholar
Lagerås, P. ed. 2016. Environment, Society and the Black Death: An Interdisciplinary Approach to the Late-Medieval Crisis in Sweden. Oxford: Oxbow Books.CrossRefGoogle Scholar
Lagerås, P. & Bartholin, T. 2003. Fire and Stone Clearance in Iron Age Agriculture: New Insights Inferred from the Analysis of Terrestrial Macroscopic Charcoal in Clearance Cairns in Hamneda, Southern Sweden. Vegetation History and Archaeobotany, 12: 8392. https://doi.org/10.1007/s00334-003-0012-9CrossRefGoogle Scholar
Lagerås, P. & Fredh, E.D. 2019. Long-Term Development of Landscape Openness and Arable Land Use in an Agricultural Region of Southern Sweden: The Potential of REVEALS Estimates Using Pollen Records from Wells. Vegetation History and Archaeobotany, 29: 113–24. https://doi.org/10.1007/s00334-019-00756-zCrossRefGoogle Scholar
Larsen, L.B., Vinther, B.M., Briffa, K.R., Melvin, T.M., Clausen, H.B., Jones, P.D. et al. 2008. New ice core evidence for a volcanic cause of the AD 536 dust veil. Geophysical Research Letters, 35(4): 15. https://doi.org/10.1029/2007GL032450CrossRefGoogle Scholar
Larsson, L. 2019. Uppåkra – A Central Site in South Scandinavian Iron Age: Stability and Change Through More Than a Millennium. Acta Archaeologica,. 90: 1342. https://doi.org/10.1111/j.1600-0390.2019.12211.xCrossRefGoogle Scholar
Löwenborg, D. 2012. An Iron Age Shock Doctrine: Did the ad 536–7 Event Trigger Large-Scale Social Changes in the Mälaren Valley Area? Journal of Archaeology and Ancient History, 4: 129.Google Scholar
Näsman, U. & Lund, J. eds. 1988. Folkevandringstiden i Norden: en krisetid mellem ældre og yngre jernalder. Århus: Århus Universitetsforlag.Google Scholar
Peros, M.C., Munoz, S.E., Gajewski, K. & Viau, A.E. 2010. Prehistoric Demography of North America Inferred From Radiocarbon Data. Journal of Archaeological Science, 37: 656–64. https://doi.org/10.1016/j.jas.2009.10.029CrossRefGoogle Scholar
Petersson, M. 2006. Djurhållning och betesdrift: djur, människor och landskap i västra Östergötland under yngre bronsålder och äldre järnålder. Stockholm: Riksantikvarieämbetet.Google Scholar
Redman, C.L. 1999. Human Impact on Ancient Environments. Tucson (AZ): University of Arizona Press.Google Scholar
Reimer, P.J., Austin, W.E.N., Bard, E., Bayliss, A., Blackwell, P.G., Bronk Ramsey, C., et al. 2020. The IntCal20 Northern Hemisphere Radiocarbon Age Calibration Curve (0–55 cal kbp). Radiocarbon, 62: 725–57. https://doi.org/10.1017/RDC.2020.41CrossRefGoogle Scholar
Riede, F. 2009. Climate and Demography in Early Prehistory: Using Calibrated 14C dates as Population Proxies. Human Biology, 81: 309–37. https://doi.org/10.3378/027.081.0311CrossRefGoogle ScholarPubMed
Rowley-Conwy, P. 2011. Westward Ho! Current Anthropology, 52: S431S451. https://doi.org/10.1086/658368Google Scholar
Ruddiman, W.F. 2003. The Anthropogenic Greenhouse Era Began Thousands of Years Ago. Climatic Change, 61: 261293. https://doi.org/10.1007/s10584-005-7278-0CrossRefGoogle Scholar
Sabo, K.S. & Söderberg, B. 2019. Byns vara eller icke vara, är det frågan? By och bebyggelse i sydvästra Skåne 400–1800 e.Kr. Situ, 13: 554.Google Scholar
Sarris, P. 2022. New Approaches to the ‘Plague of Justinian’. Past & Present, 254: 315–46. https://doi.org/10.1093/pastj/gtab024CrossRefGoogle Scholar
Shennan, S. & Edinborough, K. 2007. Prehistoric Population History: From the Late Glacial to the Late Neolithic in Central and Northern Europe. Journal of Archaeological Science, 34: 1339–45. https://doi.org/10.1016/j.jas.2006.10.031CrossRefGoogle Scholar
Shennan, S., Downey, S.S., Timpson, A., Edinborough, K., Colledge, S., Kerig, T., et al. 2013. Regional Population Collapse Followed Initial Agriculture Booms in Mid-Holocene Europe. Nature Communications, 4: 2486. https://doi.org/10.1038/ncomms3486CrossRefGoogle ScholarPubMed
Sigl, M., Winstrup, M., McConnell, J.R., Welten, K.C., Plunkett, G., Ludlow, F., et al. 2015. Timing and Climate Forcing of Volcanic Eruptions for the Past 2,500 Years. Nature, 523: 543–49. https://doi.org/10.1038/nature14565CrossRefGoogle ScholarPubMed
Solheim, S. & Iversen, F. 2019. The Mid-6th Century Crises and Their Impacts on Human Activity and Settlements in South-Eastern Norway. In: Brady, N. & Theune, C., eds. Ruralia XII: Settlement Change Across Medieval Europe: Old Paradigms and New Vistas. Leidn: Sidestone Press, pp. 423–34.Google Scholar
Sørensen, L. & Karg, S. 2014. The Expansion of Agrarian Societies Towards the North: New Evidence for Agriculture During the Mesolithic/Neolithic Transition in Southern Scandinavia. Journal of Archaeological Science, 51, 98114. https://doi.org/10.1016/j.jas.2012.08.042CrossRefGoogle Scholar
Stevens, C.J. & Fuller, D.Q. 2012. Did Neolithic Farming Fail? The Case for a Bronze Age Agricultural Revolution in the British Isles. Antiquity, 86: 707–22. https://doi.org/10.1017/S0003598X00047864CrossRefGoogle Scholar
Tallavaara, M., Pesonen, P. & Oinonen, M. 2010. Prehistoric Population History in Eastern Fennoscandia. Journal of Archaeological Science, 37: 251260. https://doi.org/10.1016/j.jas.2009.09.035CrossRefGoogle Scholar
Telford, R.J., Heegaard, E. & Birks, H.J.B. 2004. The Intercept is a Poor Estimate of a Calibrated Radiocarbon Age. The Holocene, 14: 296–98. https://doi.org/10.1191/0959683604hl707faCrossRefGoogle Scholar
Toohey, M., Krüger, K., Sigl, M., Stordal, F., Svensen, H., et al. 2016. Climatic and Societal Impacts of a Volcanic Double Event at the Dawn of the Middle Ages. Climatic Change, 136: 401–12.CrossRefGoogle Scholar
Warden, L., Moros, M., Neumann, T., Shennan, S., Timpson, A., Manning, K., et al. 2017. Climate Induced Human Demographic and Cultural Change in Northern Europe During the Mid-Holocene. Scientific Reports, 7: 111. https://doi.org/10.1038/s41598-017-14353-5Google ScholarPubMed
Williams, N.A. 2012. The Use of Summed Radiocarbon Probability Distributions in Archaeology: A Review of Methods. Journal of Archaeological Science, 39: 578–89. https://doi.org/10.1016/j.jas.2011.07.014CrossRefGoogle Scholar
Woodbridge, J., Fyfe, R.M., Roberts, N., Downey, S., Edinborough, K. & Shennan, S. 2014. The Impact of the Neolithic Agricultural Transition in Britain: A Comparison of Pollen-Based Land-Cover and Archaeological 14C Date-Inferred Population Change. Journal of Archaeological Science, 51: 216–24. https://doi.org/10.1016/j.jas.2012.10.025CrossRefGoogle Scholar
Supplementary material: File

Friman and Lagerås supplementary material

Friman and Lagerås supplementary material

Download Friman and Lagerås supplementary material(File)
File 798 KB