Hostname: page-component-76fb5796d-x4r87 Total loading time: 0 Render date: 2024-04-25T09:14:13.928Z Has data issue: false hasContentIssue false

Displacement convexity for the entropy in semi-discrete non-linear Fokker–Planck equations

Published online by Cambridge University Press:  10 January 2018

JOSÉ A. CARRILLO
Affiliation:
Department of Mathematics, Imperial College London, London SW7 2AZ, UK email: carrillo@imperial.ac.uk
ANSGAR JÜNGEL
Affiliation:
Institute for Analysis and Scientific Computing, Vienna University of Technology, Wiedner Hauptstraße 8-10, 1040 Wien, Austria email: juengel@tuwien.ac.at
MATHEUS C. SANTOS
Affiliation:
Departamento de Matemática – IMECC, Universidade Estadual de Campinas, Campinas-SP, Brazil email: matheus.santos@ufrgs.com
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The displacement λ-convexity of a non-standard entropy with respect to a non-local transportation metric in finite state spaces is shown using a gradient flow approach. The constant λ is computed explicitly in terms of a priori estimates of the solution to a finite-difference approximation of a non-linear Fokker–Planck equation. The key idea is to employ a new mean function, which defines the Onsager operator in the gradient flow formulation.

Type
Papers
Creative Commons
Creative Common License - CCCreative Common License - BY
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright
© Cambridge University Press 2018

Footnotes

The first author was partially supported by the Royal Society via a Wolfson Research Merit Award and the EPSRC Grant EP/P031587/1. The second author acknowledges partial support from the Austrian Science Fund (FWF), Grants P22108, P24304, F65 and W1245. The last author acknowledges the support from the São Paulo Research Foundation (FAPESP), Grant 2015/20962-7.

References

Ambrosio, L., Gigli, N. & Savaré, G. (2005) Gradient Flows in Metric Spaces and in the Space of Probability Measures. Lectures in Mathematics, Birkhäuser, Basel.Google Scholar
Bessemoulin-Chatard, M. (2012) A finite volume scheme for convection-diffusion equations with nonlinear diffusion derived from the Scharfetter-Gummel scheme. Numer. Math. 121, 637670.CrossRefGoogle Scholar
Bonciocat, A.-I. & Sturm, K.-T. (2009) Mass transportation and rough curvature bounds for discrete spaces. J. Funct. Anal. 256, 29442966.CrossRefGoogle Scholar
Caputo, P., Dai Pra, P. & Posta, G. (2009) Convex entropy decay via the Bochner–Bakry–Emery approach. Ann. Inst. H. Poincaré Prob. Stat. 45, 734753.CrossRefGoogle Scholar
Carrillo, J. A., McCann, R. & Villani, C. (2006) Contractions in the 2-Wasserstein length space and thermalization of granular media. Arch. Ration. Mech. Anal. 179, 217263.CrossRefGoogle Scholar
Carrillo, J. A., Lisini, S., Savaré, G. & Slepčev, D. (2010) Nonlinear mobility continuity equations and generalized displacement convexity. J. Funct. Anal. 258, 12731309.CrossRefGoogle Scholar
Chow, S., Huang, W., Li, Y. & Zhou, H. (2012) Fokker–Planck equations for a free energy functional or Markov process on a graph. Arch. Ration. Mech. Anal. 203, 9691008.CrossRefGoogle Scholar
Daneri, S. & Savaré, G. (2008) Eulerian calculus for the displacement convexity in the Wasserstein distance. SIAM J. Math. Anal. 40, 11041122.CrossRefGoogle Scholar
Erbar, M. & Maas, J. (2012) Ricci curvature bounds for finite Markov chains via convexity of the entropy. Arch. Ration. Mech. Anal. 206, 9971038.CrossRefGoogle Scholar
Erbar, M. & Maas, J. (2014) Gradient flow structures for discrete porous medium equations. Discrete Contin. Dyn. Sys. 34, 13551374.Google Scholar
Fathi, M. & Maas, J. (2016) Entropic Ricci curvature bounds for discrete interacting systems. Ann. Appl. Prob. 26, 17741806.CrossRefGoogle Scholar
Gozlan, N., Roberto, C., Cyril Samson, P.-M. & Tetali, P. (2014) Displacement convexity of entropy and related inequalities on graphs. Prob. Theory Relat. Fields 160, 4794.CrossRefGoogle Scholar
Jordan, R., Kinderlehrer, D. & Otto, F. (1998) The variational formulation of the Fokker–Planck equation. SIAM J. Math. Anal. 29, 117.CrossRefGoogle Scholar
Jüngel, A. (2016) Entropy Methods for Diffusive Partial Differential Equations, BCAM SpringerBriefs, Cham.CrossRefGoogle Scholar
Jüngel, A. & Yue, W. (2017) Discrete Beckner inequalities via the Bochner–Bakry–Emery approach for Markov chains. Ann. Appl. Probab. 27, 22382269.CrossRefGoogle Scholar
Lisini, S., Matthes, D. &, Savar, G. (2012) Cahn-Hilliard and thin film equations with nonlinear mobility as gradient flows in weighted-Wasserstein metrics. J. Diff. Eq. 253 (2), 814850.CrossRefGoogle Scholar
Lott, J. & Villani, C. (2009) Ricci curvature for metric-measure spaces via optimal transport. Ann. Math. 169, 903991.CrossRefGoogle Scholar
Maas, J. (2011) Gradient flows of the entropy for finite Markov chains. J. Funct. Anal. 261, 22502292.CrossRefGoogle Scholar
Maas, J. & Matthes, D. (2016) Long-time behavior of a finite volume discretization for a fourth order diffusion equation. Nonlinearity 29, 19922023.CrossRefGoogle Scholar
McCann, R. (1997) A convexity principle for interacting gases. Adv. Math. 128, 153179.CrossRefGoogle Scholar
Mielke, A. (2013) Geodesic convexity of the relative entropy in reversible Markov chains. Calc. Var. Partial Diff. Eqs. 48, 131.CrossRefGoogle Scholar
Otto, F. (2001) The geometry of dissipative evolution equations: The porous medium equation. Commun. Partial Diff. Eqs. 26, 101174.CrossRefGoogle Scholar
von Renesse, M.-K. & Sturm, K.-Th. (2005) Transport inequalities, gradient estimates, entropy, and Ricci curvature. Commun. Pure Appl. Math. 58, 923940.CrossRefGoogle Scholar
Sammer, M. & Tetali, P. (2009) Concentration on the discrete torus using transportation. Combin. Prob. Comput. 18, 835860.CrossRefGoogle Scholar
Villani, C. (2009) Optimal Transport, Old and New, Springer, Berlin.CrossRefGoogle Scholar