Hostname: page-component-7c8c6479df-r7xzm Total loading time: 0 Render date: 2024-03-29T09:56:08.687Z Has data issue: false hasContentIssue false

WISHes coming true: water in low-mass star-forming regions with Herschel

Published online by Cambridge University Press:  25 November 2011

L.E. Kristensen
Affiliation:
Leiden Observatory, Leiden University, PO Box 9513, 2300RA Leiden, The Netherlands
R. Visser
Affiliation:
Leiden Observatory, Leiden University, PO Box 9513, 2300RA Leiden, The Netherlands
E.F. van Dishoeck
Affiliation:
Leiden Observatory, Leiden University, PO Box 9513, 2300RA Leiden, The Netherlands MPE, Giesenbachstrasse 1, 85748 Garching, Germany
U.A. Yıldız
Affiliation:
Leiden Observatory, Leiden University, PO Box 9513, 2300RA Leiden, The Netherlands
G.J. Herczeg
Affiliation:
MPE, Giesenbachstrasse 1, 85748 Garching, Germany
S. Doty
Affiliation:
Department of Physics and Astronomy, Denison University, Granville, OH 43023, USA
J.K. Jørgensen
Affiliation:
Centre for Star and Planet Formation, Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade 5-7, 1350 Copenhagen K., Denmark
T.A. van Kempen
Affiliation:
Leiden Observatory, Leiden University, PO Box 9513, 2300RA Leiden, The Netherlands
C. Brinch
Affiliation:
Leiden Observatory, Leiden University, PO Box 9513, 2300RA Leiden, The Netherlands
S. Wampfler
Affiliation:
Institute of Astronomy, ETH Zurich, 8093 Zurich, Switzerland
S. Bruderer
Affiliation:
Institute of Astronomy, ETH Zurich, 8093 Zurich, Switzerland
A.O. Benz
Affiliation:
Institute of Astronomy, ETH Zurich, 8093 Zurich, Switzerland
Get access

Abstract

Water is a key molecule for tracing physical and chemical processes in star-forming regions. The key program “Water in star-forming regions with Herschel” is observing several water transitions towards low-mass protostars with HIFI. Results regarding the 557 GHz transition of water are reported here showing that the line is surprisingly broad, and consists of several different velocity components. The bulk of the emission comes from shocks, where the abundance is increased by several orders of magnitude to  ~10-4. The abundance of water in the outer envelope is determined to  ~10-8, whereas only an upper limit of 10-5 is derived for the inner, warm envelope.

Type
Research Article
Copyright
© EAS, EDP Sciences 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arce, H.G., Shepherd, D., Gueth, F., et al., 2007, Protostars and Planets V, 245
Bergin, E.A., Kaufman, M.J., Melnick, G.J., et al., 2003, ApJ, 582, 830 CrossRef
Boonman, A.M.S., Doty, S.D., van Dishoeck, E.F., et al., 2003, A&A, 406, 937
Brinch, C., & Hogerheijde, M.R., 2010, A&A, 523, A25
van Dishoeck, E.F., Kristensen, L.E., Benz, A.O., et al., 2011, PASP [arXiv:1012.4570]
Franklin, J., Snell, R.L., Kaufman, M.J., et al., 2008, ApJ, 674, 1015 CrossRef
de Graauw, T., Helmich, F.P., Phillips, T.G., et al., 2010, A&A, 518, L6
Kaufman, M.J., & Neufeld, D.A., 1996, ApJ, 456, 611 CrossRef
van Kempen, T.A., Kristensen, L.E., Herczeg, G.J., et al., 2010, A&A, 518, L121
Kristensen, L.E., Visser, R., van Dishoeck, E.F., et al., 2010, A&A, 521, L30