Hostname: page-component-76fb5796d-dfsvx Total loading time: 0 Render date: 2024-04-25T07:55:25.686Z Has data issue: false hasContentIssue false

Stellar modelling: the AGB zoo

Published online by Cambridge University Press:  19 December 2013

S. Cristallo
Affiliation:
Osservatorio Astronomico di Teramo (INAF), via Maggini snc, Teramo 64100, Italy
O. Straniero
Affiliation:
Osservatorio Astronomico di Teramo (INAF), via Maggini snc, Teramo 64100, Italy
L. Piersanti
Affiliation:
Osservatorio Astronomico di Teramo (INAF), via Maggini snc, Teramo 64100, Italy
Get access

Abstract

The Asymptotic Giant Branch phase of low and intermediate mass stars (1.2 < M/M < 6.0) synthesizes nearly half of the heavy elements (A > 56) in the Universe. This evolutionary phase represents an ideal laboratory to test our knowledge of stellar microphysics and macrophysics. In fact, the nucleosynthesis occurring in AGB stars sensibly depends on the adopted physical inputs and on the assumptions in the treatment of physical phenomena like convection, mass loss and rotation. In this contribution we illustrate the characteristics of low mass (1.5 < M/M < 3.0) AGB models at different metallicities (− 2.2 < [Fe/H] < 0.2). In particular, we highlight the effects induced by the use of proper C-enhanced low temperature opacities and the importance of the treatment of the envelope radiative/convective interface on the formation of the 13C-pocket (the main neutron source). We briefly describe main characteristics of the FRUITY database on AGB stars nucleosynthesis, created by directly coupling a full nuclear network with evolutionary models. Finally, we discuss the effects that the inclusion of rotation has on the s-process pattern in low-mass AGB stars.

Type
Research Article
Copyright
© EAS, EDP Sciences, 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Busso, M., Gallino, R., & Wasserburg, G.J., 1999, ARA&A, 37, 239CrossRef
Busso, M., Gallino, R., Lambert, D.L., Travaglio, C., & Smith, V.V., ApJ, 557, 802
Chieffi, A., & Straniero, O., 1989, ApJS, 71, 47CrossRef
Cristallo, S., Straniero, O., Gallino, R., et al., 2001, Nucl. Phys. A, 688, 217CrossRef
Cristallo, S., Straniero, O., Lederer, M.T., & Aringer, B., 2007, ApJ, 667, 489CrossRef
Cristallo, S., Straniero, O., et al., 2009, ApJ, 696, 797CrossRef
Cristallo, S., Piersanti, L., Straniero, O., et al., 2011, ApJS, 197, 17CrossRef
Domínguez, I., Abia, C., Straniero, O., Cristallo, & S., Pavlenko, Ya.V., 2004, A&A, 422, 1045
Gallino, R., Arlandini, C., Busso, M., et al., 1998, ApJ, 497, 388CrossRef
Guandalini, R., & Cristallo, S., 2013, A&A, 555, 120
Herwig, F., Langer, N., & Lugaro, M., 2003, ApJ, 593, 1056CrossRef
Lederer, M.T., & Aringer, B., 2009, A&A, 494, 403
Marigo, P., 2002, A&A, 387, 507
Marigo, P., & Aringer, B., 2009, A&A, 508, 1539
Palmerini, S., La Cognata, M., Cristallo, S., & Busso, M., 2011, ApJ, 729, 3CrossRef
Piersanti, L., Cristallo, S., & Straniero, O., 2013, ApJ, 774, 98CrossRef
Pignatari, M., Gallino, R., Heil, M., et al., 2010, ApJ, 710, 1557CrossRef
Siess, L., Goriely, S., & Langer, N., 2004, A&A, 415, 1089
Straniero, O., Limongi, M., Chieffi, A., et al., 2000, MemSaIt, 71, 719
Straniero, O., Gallino, R., & Cristallo, S., 2006, Nucl. Phys. A, 777, 311CrossRef
Straniero, O., Cristallo, S., & Piersanti, L., ApJ, submitted
Truran, J.W., & Iben, I. Jr., 1977, ApJ, 216, 797CrossRef
Vauclair, S., & Theado, S., 2012, ApJ, 753, 49CrossRef