Hostname: page-component-848d4c4894-jbqgn Total loading time: 0 Render date: 2024-07-04T20:04:01.708Z Has data issue: false hasContentIssue false

Inverse methods for asteroid orbit computation

Published online by Cambridge University Press:  15 February 2011

D.A. Oszkiewicz
Affiliation:
University of Helsinki, Department of Physics, PO Box 64, 00014 Helsinki, Finland
K. Muinonen
Affiliation:
University of Helsinki, Department of Physics, PO Box 64, 00014 Helsinki, Finland Finnish Geodetic Institute, Geodeetinrinne 2, PO Box 15, 02431 Masala, Finland
J. Virtanen
Affiliation:
Finnish Geodetic Institute, Geodeetinrinne 2, PO Box 15, 02431 Masala, Finland
M. Granvik
Affiliation:
Institute for Astronomy, 2680 Woodlawn Drive, Honolulu, HI 96822, USA
T. Pieniluona
Affiliation:
University of Helsinki, Department of Physics, PO Box 64, 00014 Helsinki, Finland
Get access

Abstract

Statistical asteroid-orbit-computation methods have proven important for applications such as computing the collision probability, performing dynamical classification, identifying asteroids, and aiding the recovery of lost objects. These methods will be of major importance during the Gaia mission (to be launched in 2012). Here we discuss these methods and some of their applications and potentials. As earlier, we examine the Bayesian a posteriori probability density of the orbital elements using Monte-Carlo methods that map the discretized volume of solutions in the orbital-element phase space. In particular, we use the Markov-chain Monte-Carlo (MCMC) method to map the phase space. The marginal orbital-element distributions then serve as a base for applications as collision probability computation, dynamical classification and others. A number of recent applications are presented. Importance of the method for the Gaia mission is also described.

Type
Research Article
Copyright
© EAS, EDP Sciences 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Références

Chodas, P., & Yeomans, D.K., 1996, “The orbital motion and impact circumstances of Comet Shoemaker-Levy 9 and Jupiter”, In The Collision of Comet Shoemaker-Levy 9 and Jupiter, ed. K.S. Noll, H.A. Weaver, & P.D. Feldman (Cambridge Univ. Press)
Gladman, B., Kavelaars, J., Petit, J., et al., 2008, Bull. Am. Astron. Soc.
Granvik, M., Virtanen, J., Oszkiewicz, D.A., & Muinonen, K., 2008, MAPS, 44, 1853
Jenniskens, P., Shaddad, M.H., Numan, et al., 2008, TC3” Nature (458): published in Letters to Nature, 485
Mengersen, K.L., Robert, C.P., & Guihenneuc-Jouyaux, C., 1999, Bayesian Stat., 6, 415
Mignard, F., Cellino, A., Muinonen, K., et al., 2007, Earth, Moon, and Planets, 101, 97 CrossRef
Milani, A., 1999, Icarus, 137, 269 CrossRef
Milani, A., Chesley, S.R., Chodas, P.W., & Valsecchi G.B., 2002, “Asteroid close approaches and impact opportunities”, ed. W.F. Bottke Jr., A. Cellino, P. Paolicchi & R.P. Binzel, Asteroids III (Univ. of Arizona Press, Tucson), 55
Milani, A., Sansaturio, M.E., Tommei, G., Arratia, O., & Chesley, S.R., 2004, Astron. Astrophys., 431, 729 CrossRef
Muinonen, K., & Bowell, E., 1993, Icarus, 104, 255 CrossRef
Muinonen, K., Virtanen, J., Granvik, M., & Laakso, T., 2006, MNRAS, 368, 809 CrossRef
Oszkiewicz, D.A., Muinonen, K., Virtanen, J., & Granvik, M., 2008, MAPS, 44, 1897
Oszkiewicz, D.A., Muinonen, K., Virtanen, J., & Granvik, M., 2009, Proceedings of 1st IAA Planetary Defense Conference: Protecting Earth from Asteroids, Granada, Spain
Virtanen, J., Muinonen, K., & Bowell, E., 2001, Icarus, 154, 412 CrossRef