Hostname: page-component-8448b6f56d-sxzjt Total loading time: 0 Render date: 2024-04-24T06:11:24.126Z Has data issue: false hasContentIssue false

The Formation Of Massive Stars And The Effects Of Rotation On Star Formation

Published online by Cambridge University Press:  16 November 2011

A. Maeder*
Affiliation:
Geneva Observatory, University of Geneva, 51 chemin des Maillettes, 1290 Versoix, Switzerland
Get access

Abstract

We first review the current debates about massive star formation over the last decade. Then we concentrate on the accretion scenario, emphasizing the evidences in favor of it. We study the basic properties of the accretion scenario in the spherical case. In the case of massive stars, the free-fall time is longer than the Kelvin–Helmholtz timescale, so that the massive stars in formation reach thermal equilibrium before the accretion is completed. This is why the history of the accretion rates for massive stars is so critical. We derive analytically the typical accretion rates, their upper and lower limits, showing the importance of dust properties.

We examine the basic properties of the disk, their luminosity and temperature in the stationary approximation, as well as their various components. The results of some recent numerical models are discussed with a particular attention to the effects that favor accretion on the central body relatively to the case of spherical accretion. These effects strongly influence the final stellar mass resulting from a collapsing clump in a cloud. We also show some properties of the pre-main sequence tracks of massive stars in the Hertzsprung-Russell diagram. During the first part of their evolution up to a mass of about 3Mʘ the forming stars are overluminous, then they are strongly underluminous (with respect to the zero age main sequence) up to a mass of about 10Mʘ until they adjust after a slight overluminosity to the main sequence values. We consider some rotational properties related to star formation. The angular momentum has to be reduced by a factor of about 106 during star formation. Some effects contributing to this reduction have been studied particularly in the case of low- and intermediate-mass stars: disk locking and magnetic braking. We also discuss the case of massive stars and emphasize the effects of the gravity darkening of rotating stars that may favor the accretion from the disk of massive stars in formation.

Type
Research Article
Copyright
© EAS, EDP Sciences, 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bernasconi, P.A., & Maeder, A., 1996, A&A, 307, 829
Bonnell, I.A., Bate, M.R., Clarke, C.J., & Pringle, J.E., 1997, MNRAS, 285, 201CrossRef
Bonnell, I.A., Bate, M.R., Clarke, C.J., & Pringle, J.E., 2001, MNRAS, 323, 785CrossRef
Bonnell, I.A., Bate, M.R., & Zinnecker, H., 1998, MNRAS, 298, 93CrossRef
Bouvier, J., 2008, A&A, 459, L53
Calvet, N., Muzerolle, J., Briceno, C., et al., 2004, AJ, 128, 1294CrossRef
Chini, R., Hofmeister, V., Kimeswenger, S., Nielbock, M., Nurnberger, D., et al., 2004, ESO Messenger, 117, 36
Churchwell, E., 2000, Massive star formation: The role of bipolar outflows. In Unsolved Problems in Stellar Evolution, ed. Livio, M.. Space Telescope Sci. Inst. Ser., 12, 41Google Scholar
Hartmann, L., 1998, Accretion Processes in Star Formation (Cambridge Univ. Press), 237Google Scholar
Henning, T., Schreyer, K., Launhardt, R., & Burkert, A., 2000, A&A, 353, 211PubMed
Hosokawa, T., Yorke, H.W., & Omukai, K., 2010, ApJ, 721, 478CrossRef
Kawaler, S.D., 1988, ApJ, 333, 236CrossRef
Kawaler, S.D., 2004, in Stellar Rotation, IAU Symp. 215, ed. Maeder, A. & Eenens, P., ASP, 561Google Scholar
Krumholz, M.R., Klein, R.J., & McKee, C.F., 2007, ApJ, 656, 959CrossRef
Kuiper, R., Klahr, H., Beuther, H., & Henning, T., 2010, ApJ, 722, 1556CrossRef
Lovekhin, C.C., Deupree, R.G., & Short, C.I., 2006, ApJ, 643, L460CrossRef
Lucy, L.B., 1967, ZA, 65, 89
MacLow, M.-M., & Klessen, R., 2004, Rev. Mod. Phys., 76, 125CrossRef
Maeder, A., Georgy, C., & Meynet, G., 2008, A&A, 479, L37
Maeder, A., 2009, Physics, Formation and Evolution of Rotating Stars (Springer Verlag), 829Google Scholar
Mathieu, R.D., 2004, The Rotation of Low–Mass Pre–MS Stars. in Stellar Rotation, IAU Symp 215, ed. by Maeder, A. & Eenens, P., 113Google Scholar
Mc Kee, C.F., & Tan, J.C., 2003, ApJ, 585, 850CrossRef
Meynet, G., & Maeder, A., 2000, A&A, 321, 465
Nakano, T., Hasegawa, T., Morino, J.I., & Yamashita, T., 2000, ApJ, 534, 976CrossRef
Offner, S.S.R., Klein, R.J., McKee, C.F., & Krumholz, M.R., 2009, ApJ, 703, 131CrossRef
Palla, F., 2002, Physics of Star Formation in Galaxies, 2002, Saas–Fee Adv. Course, ed. Maeder, A. & Meynet, G. (Springer Verlag), 9Google Scholar
Peter, C., 2005, Diploma work, Geneva Observatory
Schmeja, S., & Klessen, S.R., 2004, A&A, 419, 405
ud-Doula, A., Owocki, S.P., & Townsend, R.H.D., 2008, MNRAS, 385, 97CrossRef
ud-Doula, A., Owocki, S.P., & Townsend, R.H.D., 2009, MNRAS, 392, 1022CrossRef
Wolfire, M.G., & Cassinelli, J.P., 1987, ApJ, 319, 850CrossRef
Yorke, H.W., & Sonnhalter, C., 2002, ApJ, 569, 846CrossRef
Yorke, H.W., 2004, Theory of Formation of Massive Stars via Accretion. in Star formation at High Angular Resolution, IAU Symp. 221, ed. Burton, M.G. et al., 141Google Scholar
Zhao, Ming, , 2010, in Active OB stars: structure, evolution, mass loss and critical limits, IAU Symposium 272, ed. Neiner, C. et al., in pressGoogle Scholar
Zinnecker, H., Yorke, H.W., 2007, ARA&A, 45, 481CrossRef