Hostname: page-component-848d4c4894-mwx4w Total loading time: 0 Render date: 2024-06-18T09:50:16.342Z Has data issue: false hasContentIssue false

AGB nucleosynthesis at low metallicity: What can we learn from Carbon- and s-elements-enhanced metal-poor stars

Published online by Cambridge University Press:  25 February 2014

C. Abate
Affiliation:
Department of Astrophysics/IMAPP, Radboud University Nijmegen, PO Box 9010, 6500 GL Nijmegen, The Netherlands
O.R. Pols
Affiliation:
Department of Astrophysics/IMAPP, Radboud University Nijmegen, PO Box 9010, 6500 GL Nijmegen, The Netherlands
R.G. Izzard
Affiliation:
Argelander Institut für Astronomie, Auf dem Hügel 71, 53121 Bonn, Germany
A.I. Karakas
Affiliation:
Research School of Astronomy & Astrophysics, Mount Stromlo Observatory, Weston Creek ACT 2611, Australia
Get access

Abstract

CEMP-s stars are very metal-poor stars with enhanced abundances of carbon and s-process elements. They form a significant proportion of the very metal-poor stars in the Galactic halo and are mostly observed in binary systems. This suggests that the observed chemical anomalies are due to mass accretion in the past from an asymptotic giant branch (AGB) star. Because CEMP-s stars have hardly evolved since their formation, the study of their observed abundances provides a way to probe our models of AGB nucleosynthesis at low metallicity. To this end we included in our binary evolution model the results of the latest models of AGB nucleosynthesis and we simulated a grid of 100 000 binary stars at metallicity Z = 0.0001 in a wide range of initial masses and separations. We compared our modelled stars with a sample of 60 CEMP-s stars from the SAGA database of metal-poor stars. For each observed CEMP-s star of the sample we found the modelled star that reproduces best the observed abundances. The result of this comparison is that we are able to reproduce simultaneously the observed abundance of the elements affected by AGB nucleosynthesis (e.g. C, Mg, s-elements) for about 60% of the stars in the sample.

Type
Research Article
Copyright
© EAS, EDP Sciences, 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abate, C., Pols, O.R., Izzard, R.G., Mohamed, S.S., & de Mink, S.E., 2013, A&A, 552, A26
Abate, C., Pols, O.R., Izzard, R.G., & Karakas, A.I., 2014, in preparation
Aoki, W., Beers, T.C., Christlieb, N., et al., 2007, ApJ, 655, 492CrossRef
Busso, M., Gallino, R., & Wasserburg, G.J., 1999, ARA&A, 37, 239CrossRef
Cameron, A.G.W., 1955, ApJ, 121, 144CrossRef
Frebel, A., Christlieb, N., Norris, J.E., et al., 2006, ApJ, 652, 1585CrossRef
Herwig, F., 2005, ARA&A, 43, 435CrossRef
Izzard, R.G., Tout, C.A., Karakas, A.I., & Pols, O.R., 2004, MNRAS, 350, 407CrossRef
Izzard, R.G., Dray, L.M., Karakas, A.I., Lugaro, M., & Tout, C.A., 2006, A&A, 460, 565
Izzard, R.G., Glebbeek, E., Stancliffe, R.J., & Pols, O.R., 2009, A&A, 508, 1359
Karakas, A.I., 2010, MNRAS, 403, 1413CrossRef
Lucatello, S., Beers, T.C., Christlieb, N., et al., 2006, ApJ, 652, L37CrossRef
Lucatello, S., Tsangarides, S., Beers, T.C., et al., 2005, ApJ, 625, 825CrossRef
Lugaro, M., Doherty, C.L., Karakas, A.I., et al., 2012, Meteor. Planet. Sci., 47, 1998CrossRef
Marsteller, B., Beers, T.C., Rossi, S., et al., 2005, Nucl. Phys. A, 758, 312CrossRef
Straniero, O., Gallino, R., Busso, M., et al., 1995, ApJ, 440, L85CrossRef
Suda, T., Katsuta, Y., Yamada, S., et al., 2008, PASJ, 60, 1159
Suda, T., Yamada, S., Katsuta, Y., et al., 2011, MNRAS, 412, 843