Skip to main content Accessibility help
×
Home
Hostname: page-component-564cf476b6-pp5r9 Total loading time: 0.181 Render date: 2021-06-18T19:18:32.895Z Has data issue: false Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true }

Molecular hydrogen emission from protoplanetary disks: UV and X-ray irradiated disk model with dust evolution

Published online by Cambridge University Press:  06 January 2010

H. Nomura
Affiliation:
ARC, School of Maths. and Physics, Queen's University Belfast, Belfast BT7 1NN, UK
Y. Aikawa
Affiliation:
Dept. of Earth and Planetary Sciences, Kobe University, Nada, Kobe 657-8501, Japan
M. Tsujimoto
Affiliation:
Dept. of Astronomy and Astrophysics, Pennsylvania State University, PA 16802, USA
Y. Nakagawa
Affiliation:
Dept. of Earth and Planetary Sciences, Kobe University, Nada, Kobe 657-8501, Japan
T. J. Millar
Affiliation:
ARC, School of Maths. and Physics, Queen's University Belfast, Belfast BT7 1NN, UK
Get access

Abstract

We have modelled a detailed physical structure of protoplanetary disks, taking into account X-ray and UV irradiation from a central star, as well as dust size growth and settling towards the disk midplane. In addition, we have calculated the level populations and line emission of molecular hydrogen in the disks. As a result, we reproduce the observed strong H2 line flux if the disks are influenced by strong UV and X-ray irradiation. Also, the dust evolution changes the physical properties of the disk, and thus the H2 line ratios.


Type
Research Article
Copyright
© EAS, EDP Sciences, 2010

Access options

Get access to the full version of this content by using one of the access options below.

References

Nomura, H., Aikawa, Y., Tsujimoto, M., Nakagawa, Y., & Millar, T.J., 2007, ApJ, 661, 334 CrossRef
Nomura, H., & Millar, T.J., 2005, A&A, 438, 923

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Molecular hydrogen emission from protoplanetary disks: UV and X-ray irradiated disk model with dust evolution
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Molecular hydrogen emission from protoplanetary disks: UV and X-ray irradiated disk model with dust evolution
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Molecular hydrogen emission from protoplanetary disks: UV and X-ray irradiated disk model with dust evolution
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *