Hostname: page-component-848d4c4894-xfwgj Total loading time: 0 Render date: 2024-06-17T10:29:11.262Z Has data issue: false hasContentIssue false

Constraints on Extrasolar Planet Populations from VLT NACO/SDI and MMT SDI and Direct Adaptive Optics Imaging Surveys: Giant Planets are Rare at Large Separations

Published online by Cambridge University Press:  06 January 2010

E. L. Nielsen
Steward Observatory, University of Arizona, Tucson, AZ 85721, USA
L. M. Close
Steward Observatory, University of Arizona, Tucson, AZ 85721, USA
B. A. Biller
Institute for Astronomy, University of Hawaii, Honolulu, HI 96822, USA
E. Masciadri
INAF–Osservatorio Astrofisico di Arcetri, Italy
R. Lenzen
Max–Planck–Institut für Astronomie, Königstuhl 17, 69117 Heidelberg, Germany
Get access


We examine the implications for the distribution of extrasolar planets based on the null results from two of the largest direct imaging surveys published to date. Combining the measured contrast curves from Masciadri et al.  (2005) and Biller et al.  (2007), we consider what distributions of planet masses and semi-major axes can be ruled out by these data, based on Monte Carlo simulations of planet populations. We can set the following upper limit with 95% confidence: the fraction of stars with planets with semi-major axis between 20 and 100 AU, and mass above 4 MJup, is 20% or less. Also, with a distribution of planet mass of $\frac{{\rm d}N}{{\rm d}M} \propto M^{-1.16}$ in the range of 0.5–13 MJup, we can rule out a power-law distribution for semi-major axis ($\frac{{\rm d}N}{{\rm d}a} \propto a^{\alpha}$) with index 0 and upper cut-off of 18 AU, and index –0.5 with an upper cut-off of 48 AU. For the distribution suggested by Cumming et al.  (2008), a power-law of index –0.61, we can place an upper limit of 75 AU on the semi-major axis distribution.

Research Article
© EAS, EDP Sciences, 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)


Baraffe, I., Chabrier, G., Barman, T.S., Allard, F., & Hauschildt, P.H. 2003, A&A, 402, 701
Biller, B.A., Close, L.M., Masciadri, E., et al., 2007, ApJ, accepted
Burrows, A., Sudarsky, D., & Lunine, J.I. 2003, ApJ, 596, 587
Butler, R.P., Wright, J.T., Marcy, G.W., 2006, ApJ, 646, 505 CrossRef
Close, L.M., Lenzen, R., Guirado, J.C., et al., 2005, Nature, 433, 286 CrossRef
Cumming, A., Butler, R.P., Marcy, G.W., et al., 2008, PASP, 120, 531 CrossRef
Fischer, D.A., & Valenti, J., 2005, ApJ, 622, 1102 CrossRef
Johnson, J.A., Butler, R.P., Marcy, G.W., et al., 2007, ApJ, 670, 833 CrossRef
Lenzen, R., Close, L., Brandner, W., Biller, B., & Hartung, M., 2004, in Ground-based Instrumentation for Astronomy, ed. A.F.M. Moorwood & M. Iye, Proc. SPIE, 5492, 970 CrossRef
Masciadri, E., Mundt, R., Henning, T., Alvarez, C., & Barrado y Navascués, D., 2005, ApJ, 625, 1004 CrossRef
Nielsen, E.L., Close, L.M., Biller, B.A., Masciadri, E., & Lenzen, R., 2008, ApJ, 674, 466 CrossRef