Skip to main content Accessibility help
×
Home
Hostname: page-component-7bb4899584-msqqt Total loading time: 0.218 Render date: 2023-01-26T22:31:52.080Z Has data issue: true Feature Flags: { "useRatesEcommerce": false } hasContentIssue true

Replicant compression coding in Besov spaces

Published online by Cambridge University Press:  15 May 2003

Gérard Kerkyacharian
Affiliation:
Laboratoire de Probabilités et Modèles Aléatoires, UMR 7599 du CNRS, Université Paris VI et Université Paris VII, 16 rue de Clisson, 75013 Paris, France. Université Paris X – Nanterre, 200 avenue de la République, 92001 Nanterre Cedex, France; picard@math.jussieu.fr.
Dominique Picard
Affiliation:
Laboratoire de Probabilités et Modèles Aléatoires, UMR 7599 du CNRS, Université Paris VI et Université Paris VII, 16 rue de Clisson, 75013 Paris, France.
Get access

Abstract

We present here a new proof of the theorem of Birman and Solomyak on the metric entropy of the unit ball of a Besov space $B^s_{\pi,q}$ on a regular domain of ${\mathbb R}^d.$ The result is: if s - d(1/π - 1/p)+> 0, then the Kolmogorov metric entropy satisfies H(ε) ~ ε-d/s. This proof takes advantage of the representation of such spaces on wavelet type bases and extends the result to more general spaces. The lower bound is a consequence of very simple probabilistic exponential inequalities. To prove the upper bound, we provide a new universal coding based on a thresholding-quantizing procedure using replication.

Type
Research Article
Copyright
© EDP Sciences, SMAI, 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Assouad, P., Deux remarques sur l'estimation. C. R. Acad. Sci. Paris Sér. I Math. 296 (1983) 1021-1024.
Birgé, L., Sur un théorème de minimax et son application aux tests. Probab. Math. Statist. 3 (1984) 259-282.
Birgé, L. and Massart, P., An adaptative compression algorithm in Besov spaces. Constr. Approx. 16 (2000) 1-36. CrossRef
Birman, M.S. and Solomiak, M.Z., Piecewise-polynomial approximation of functions of the classes W p . Mat. Sbornik 73 (1967) 295-317. CrossRef
Cohen, A., DeVore, R. and Dahmen, W., Multiscale methods on bounded domains. Trans. AMS 352 (2000) 3651-3685. CrossRef
Cohen, A., Dahmen, W., Daubechies, I. and DeVore, R., Tree approximation and optimal encoding. Appl. Comput. Harmon. Anal. 11 (2001) 192-226. CrossRef
T.A. Cover and J.A. Thomas, Element of Information Theory. Wiley Interscience (1991).
Delyon, B. and Juditski, A., On minimax wavelet estimators. Appl. Comput. Harmon. Anal. 3 (1996) 215-228. CrossRef
DeVore, R., Kyriazis, R. and Wang, P., Multiscale characterization of Besov spaces on bounded domains. J. Approx. Theory 93 (1998) 273-292. CrossRef
R. DeVore, Nonlinear approximation. Cambridge University Press, Acta Numer. 7 (1998) 51-150.
R. DeVore and G. Lorentz, Constructive Approximation. Springer-Verlag, New York (1993).
Donoho, D.L., Unconditional bases and bit-level compression. Appl. Comput. Harmon. Anal. 3 (1996) 388-392. CrossRef
Hoeffding, W., Probability inequalities for sums of bounded random variables. J. Amer. Statist. Assoc. 58 (1963) 13-30. CrossRef
W. Härdle, G. Kerkyacharian, D. Picard and A. Tsybakov, Wavelet, Approximation and Statistical Applications. Springer Verlag, New York, Lecture Notes in Statist. 129 (1998).
Kerkyacharian, G. and Picard, D., Thresholding algorithms, maxisets and well-concentrated bases, with discussion. Test 9 (2000) 283-345. CrossRef
G. Kerkyacharian and D. Picard, Minimax or maxisets? Bernoulli 8 (2002) 219-253.
G. Kerkyacharian and D. Picard, Entropy, Universal coding, Approximation and bases properties. Technical Report (2001).
Kerkyacharian, G. and Picard, D., Density Estimation by Kernel and Wavelets methods - Optimality of Besov spaces. Statist. Probab. Lett. 18 (1993) 327-336. CrossRef
Kolmogorov, A.N. and Tikhomirov, V.M., π-entropy and π-capacity. Uspekhi Mat. Nauk 14 (1959) 3-86. (Engl. Translation: Amer. Math. Soc. Transl. Ser. 2 17 , 277-364.)
Le Cam, L., Convergence of estimator under dimensionality restrictions. Ann. Statist. 1 (1973) 38-53. CrossRef
L. Le Cam, Metric dimension and statistical estimation, in Advances in mathematical sciences: CRM's 25 years. Montreal, PQ (1994) 303-311.
Lorentz, G.G., Metric entropy and approximation. Bull. Amer. Math. Soc. 72 (1966) 903-937. CrossRef
S.M. Nikolskii, Approximation of functions of several variables and imbedding theorems (Russian), Second Ed. Moskva, Nauka (1977). English translation of the first Ed., Berlin (1975).
V.V. Petrov, Limit Theorems of Probability Theory: Sequences of independent Random Variables. Oxford University Press (1995).
S.A. van de Geer, Empirical processes in M-estimation. Cambridge University Press (2000).

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Replicant compression coding in Besov spaces
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Replicant compression coding in Besov spaces
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Replicant compression coding in Besov spaces
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *