Skip to main content Accessibility help
×
Home
Hostname: page-component-7f7b94f6bd-8p2w5 Total loading time: 0.145 Render date: 2022-06-29T01:58:40.538Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true } hasContentIssue true

On the infinite time horizon linear-quadratic regulator problem undera fractional Brownian perturbation

Published online by Cambridge University Press:  15 November 2005

Marina L. Kleptsyna
Affiliation:
Laboratoire de Statistique et Processus, Université du Maine, av. Olivier Messiaen, 72085 Le Mans Cedex 9, France; marina.kleptsyna@univ-lemans.fr
Alain Le Breton
Affiliation:
Laboratoire de Modélisation et Calcul, Université J. Fourier, BP 53, 38041 Grenoble Cedex 9, France; Alain.Le-Breton@imag.fr
Michel Viot
Affiliation:
Laboratoire de Modélisation et Calcul, Université J. Fourier, BP 53, 38041 Grenoble Cedex 9, France; Alain.Le-Breton@imag.fr
Get access

Abstract

In this paper we solve the basic fractional analogue of the classical infinite time horizon linear-quadratic Gaussian regulator problem. For a completely observable controlled linear system driven by a fractional Brownian motion, we describe explicitely the optimal control policy which minimizes an asymptotic quadratic performance criterion.

Type
Research Article
Copyright
© EDP Sciences, SMAI, 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Biaggini, F., Hu, Y., Øksendal, B. and Sulem, A., A stochastic maximum principle for processes driven by fractional Brownian motion. Stochastic Processes Appl. 100 (2002) 233253.
Blackwell, D. and Dubins, L., Merging of opinions with increasing information. Ann. Math. Statist. 33 (1962) 882886. CrossRef
M.H.A. Davis, Linear Estimation and Stochastic Control. Chapman and Hall, New York (1977).
Decreusefond, L. and Üstünel, A.S., Stochastic analysis of the fractional Brownian motion. Potential Anal. 10 (1999) 177214. CrossRef
Duncan, T.E., Hu, Y. and Pasik-Duncan, B., Stochastic calculus for fractional Brownian motion I. Theory. SIAM J. Control Optim. 38 (2000) 582612. CrossRef
Gripenberg, G. and Norros, I., On the prediction of fractional Brownian motion. J. Appl. Probab. 33 (1996) 400410. CrossRef
Kleptsyna, M.L. and Le Breton, A., Statistical analysis of the fractional Ornstein-Uhlenbeck type process. Statist. Inference Stochastic Processes 5 (2002) 229248. CrossRef
Kleptsyna, M.L. and Le Breton, A., Extension of the Kalman-Bucy filter to elementary linear systems with fractional Brownian noises. Statist. Inference Stochastic Processes 5 (2002) 249271. CrossRef
Kleptsyna, M.L., Le Breton, A. and Roubaud, M.-C., General approach to filtering with fractional Brownian noises – Application to linear systems. Stochastics Reports 71 (2000) 119140.
Kleptsyna, M.L., Le Breton, A. and Viot, M., About the linear-quadratic regulator problem under a fractional Brownian perturbation. ESAIM: PS 7 (2003) 161170. CrossRef
M.L. Kleptsyna, A. Le Breton and M. Viot, Asymptotically optimal filtering in linear systems with fractional Brownian noises. Statist. Oper. Res. Trans. (2004) 28 177–190.
Le Breton, A., Adaptive control in the scalar linear-quadratic model in continious time. Statist. Probab. Lett. 13 (1992) 169177. CrossRef
R.S. Liptser and A.N. Shiryaev, Statist. Random Processes. Springer-Verlag, New York (1978).
R.S. Liptser and A.N. Shiryaev, Theory of Martingales. Kluwer Academic Publ., Dordrecht (1989).
Molchan, G.M., Linear problems for fractional Brownian motion: group approach. Probab. Theory Appl. 1 (2002) 5970 (in Russian).
Molchan, G.M., Gaussian processes with spectra which are asymptotically equivalent to a power of λ. Probab. Theory Appl. 14 (1969) 530532.
Molchan, G.M. and Golosov, J.I., Gaussian stationary processes with which are asymptotic power spectrum. Soviet Math. Dokl. 10 (1969) 134137.
Norros, I., Valkeila, E. and Virtamo, J., An elementary approach to a Girsanov formula and other analytical results on fractional Brownian motions. Bernoulli 5 (1999) 571587. CrossRef
Nuzman, C.J. and Poor, H.V., Linear estimation of self-similar processes via Lamperti's transformation. J. Appl. Prob. 37 (2000) 429452. CrossRef

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

On the infinite time horizon linear-quadratic regulator problem under a fractional Brownian perturbation
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

On the infinite time horizon linear-quadratic regulator problem under a fractional Brownian perturbation
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

On the infinite time horizon linear-quadratic regulator problem under a fractional Brownian perturbation
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *