Skip to main content Accessibility help
×
Home
Hostname: page-component-768dbb666b-9qwsl Total loading time: 0.22 Render date: 2023-02-04T12:03:03.756Z Has data issue: true Feature Flags: { "useRatesEcommerce": false } hasContentIssue true

Asymptotic behaviour of the probability-weighted moments and penultimate approximation

Published online by Cambridge University Press:  15 May 2003

Jean Diebolt
Affiliation:
Université de Marne-la-Vallée, Équipe d'Analyse et de Mathématiques Appliquées, 5 boulevard Descartes, bâtiment Copernic, Champs-sur-Marne, 77454 Marne-la-Vallée Cedex 2, France; diebolt@math.univ-mlv.fr.
Armelle Guillou
Affiliation:
Université Paris VI, Laboratoire de Statistique Théorique et Appliquée, Boîte 158, 175 rue du Chevaleret, 75013 Paris, France; guillou@ccr.jussieu.fr.
Rym Worms
Affiliation:
Université de Rouen, Laboratoire de Mathématiques Raphaël Salem, UMR 6085 du CNRS, Site Colbert, UFR Sciences, 76821 Mont-Saint-Aignan Cedex, France; rym.worms@univ-rouen.fr.
Get access

Abstract

The P.O.T. (Peaks-Over-Threshold) approach consists of using the Generalized Pareto Distribution (GPD) to approximate the distribution of excesses over a threshold. We use the probability-weighted moments to estimate the parameters of the approximating distribution. We study the asymptotic behaviour of these estimators (in particular their asymptotic bias) and also the functional bias of the GPD as an estimate of the distribution function of the excesses. We adapt penultimate approximation results to the case where parameters are estimated.

Type
Research Article
Copyright
© EDP Sciences, SMAI, 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Balkema, A. and de Haan, L., Residual life time at a great age. Ann. Probab. 2 (1974) 792-801. CrossRef
Beirlant, J., Dierckx, G., Goegebeur, Y. and Matthys, G., Tail index estimation and an exponential regression model. Extremes 2 (1999) 177-200. CrossRef
Cohen, J.P., Convergence rates for the ultimate and penultimate approximations in extreme-value theory. Adv. Appl. Prob. 14 (1982) 833-854. CrossRef
Dekkers, A.L.M. and de Haan, L., On the estimation of the extreme-value index and large quantile estimation. Ann. Statist. 17 (1989) 1795-1832. CrossRef
Diebolt, J., Durbec, V., El Aroui, M.A. and Villain, B., Estimation of extreme quantiles: Empirical tools for methods assessment and comparison. Int. J. Reliability Quality Safety Engrg. 7 (2000) 75-94. CrossRef
J. Diebolt and M.A. El Aroui, On the use of Peaks over Threshold methods for estimating out-of-sample quantiles. Comput. Statist. Data Anal. (to appear).
Drees, H., A general class of estimators of the extreme value index. J. Statist. Plann. Inf. 66 (1998) 95-112. CrossRef
Einmahl, U. and Mason, D.M., Approximation to permutation and exchangeable processes. J. Theor. Probab. 5 (1992) 101-126. CrossRef
Feuerverger, A. and Hall, P., Estimating a tail exponent by modelling departure from a Pareto distribution. Ann. Statist. 27 (1999) 760-781.
J. Galambos, Asymptotic theory of extreme order statistics. Krieger, Malabar, Florida (1978).
Gnedenko, B.V., Sur la distribution limite du terme maximum d'une série aléatoire. Ann. Math. 44 (1943) 423-453. CrossRef
Gomes, M.I., Penultimate limiting forms in extreme value theory. Ann. Inst. Stat. Math. 36 (1984) 71-85. CrossRef
Gomes, I. and de Haan, L., Approximation by penultimate extreme value distributions. Extremes 2 (2000) 71-85. CrossRef
M.I. Gomes and D.D. Pestana, Non standard domains of attraction and rates of convergence. John Wiley & Sons (1987) 467-477.
de Haan, L. and Rootzén, H., On the estimation of high quantiles. J. Statist. Plann. Infer. 35 (1993) 1-13. CrossRef
Hosking, J. and Wallis, J., Parameter and quantile estimation for the Generalized Pareto Distribution. Technometrics 29 (1987) 339-349. CrossRef
Pickands III, J., Statistical inference using extreme order statistics. Ann. Statist. 3 (1975) 119-131.
G.R. Shorack and J.A. Wellner, Empirical Processes with Applications to Statistics. Wiley, New York (1986).
Smith, R.L., Estimating tails of probability distributions. Ann. Statist. 15 (1987) 1174-1207. CrossRef
R. Worms, Vitesses de convergence pour l'approximation des queues de distributions. Thèse de doctorat de l'Université de Marne-la-Vallée (2000).
Worms, R., Penultimate approximation for the distribution of the excesses. ESAIM: P&S 6 (2002) 21-31. CrossRef

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Asymptotic behaviour of the probability-weighted moments and penultimate approximation
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Asymptotic behaviour of the probability-weighted moments and penultimate approximation
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Asymptotic behaviour of the probability-weighted moments and penultimate approximation
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *