Hostname: page-component-848d4c4894-2pzkn Total loading time: 0 Render date: 2024-05-12T23:37:13.381Z Has data issue: false hasContentIssue false

On a variant of random homogenization theory: convergence of the residual process and approximation of the homogenized coefficients

Published online by Cambridge University Press:  07 February 2014

Frédéric Legoll
Affiliation:
Laboratoire Navier, École Nationale des Ponts et Chaussées, Université Paris-Est, 6 et 8 Avenue Blaise Pascal, 77455 Marne-La-Vallée Cedex 2, France.. legoll@lami.enpc.fr
Florian Thomines
Affiliation:
INRIA Rocquencourt, MICMAC team-project, Domaine de Voluceau, B.P. 105, 78153 Le Chesnay Cedex, France.; florian.thomines@enpc.fr
Get access

Abstract

We consider the variant of stochastic homogenization theory introduced in [X. Blanc, C. Le Bris and P.-L. Lions, C. R. Acad. Sci. Série I 343 (2006) 717–724.; X. Blanc, C. Le Bris and P.-L. Lions, J. Math. Pures Appl. 88 (2007) 34–63.]. The equation under consideration is a standard linear elliptic equation in divergence form, where the highly oscillatory coefficient is the composition of a periodic matrix with a stochastic diffeomorphism. The homogenized limit of this problem has been identified in [X. Blanc, C. Le Bris and P.-L. Lions, C. R. Acad. Sci. Série I 343 (2006) 717–724.]. We first establish, in the one-dimensional case, a convergence result (with an explicit rate) on the residual process, defined as the difference between the solution to the highly oscillatory problem and the solution to the homogenized problem. We next return to the multidimensional situation. As often in random homogenization, the homogenized matrix is defined from a so-called corrector function, which is the solution to a problem set on the entire space. We describe and prove the almost sure convergence of an approximation strategy based on truncated versions of the corrector problem.

Type
Research Article
Copyright
© EDP Sciences, SMAI, 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

A. Anantharaman, R. Costaouec, C. Le Bris, F. Legoll and F. Thomines, Introduction to numerical stochastic homogenization and the related computational challenges: some recent developments. In vol. 22 of Lect. Not. Ser., edited by W. Bao and Q. Du. Institute for Mathematical Sciences, National University of Singapore, (2011) 197–272.
Bal, G., Garnier, J., Gu, Y. and Jing, W., Corrector theory for elliptic equations with long-range correlated random potential. Asymptot. Anal. 77 (2012) 123145. Google Scholar
Bal, G., Garnier, J., Motsch, S. and Perrier, V., Random integrals and correctors in homogenization. Asymptot. Anal. 59 (2008) 126. Google Scholar
Ball, J.M., Convexity conditions and existence theorems in nonlinear elasticity. Arch. Ration. Mech. Anal. 63 (1977) 337403. Google Scholar
A. Bensoussan, J.-L. Lions and G. Papanicolaou, Asymptotic analysis for periodic structures, vol. 5 of Studi. Math. Appl. North-Holland Publishing Co., Amsterdam-New York (1978).
P. Billingsley, Convergence of Probability Measures. John Wiley & Sons Inc (1968).
Blanc, X., Le Bris, C. and Lions, P.-L., Une variante de la théorie de l’homogénéisation stochastique des opérateurs elliptiques [A variant of stochastic homogenization theory for elliptic operators]. C. R. Acad. Sci. Série I 343 (2006) 717724. Google Scholar
Blanc, X., Le Bris, C. and Lions, P.-L., Stochastic homogenization and random lattices. J. Math. Pures Appl. 88 (2007) 3463. Google Scholar
Bourgeat, A. and Piatnitski, A., Estimates in probability of the residual between the random and the homogenized solutions of one-dimensional second-order operator. Asymptot. Anal. 21 (1999) 303315. Google Scholar
Bourgeat, A. and Piatnitski, A., Approximation of effective coefficients in stochastic homogenization. Ann Inst. Henri Poincaré – PR 40 (2004) 153165. Google Scholar
D. Cioranescu and P. Donato, An introduction to homogenization, vol. 17 of Oxford Lect. Ser. Math. Appl. Oxford University Press, New York (1999).
Costaouec, R., Le Bris, C. and Legoll, F., Approximation numérique d’une classe de problèmes en homogénéisation stochastique [Numerical approximation of a class of problems in stochastic homogenization]. C. R. Acad. Sci. Série I 348 (2010) 99103. Google Scholar
Engquist, B. and Souganidis, P.E., Asymptotic and numerical homogenization. Acta Numerica 17 (2008) 147190. Google Scholar
Henao, D. and Mora-Corral, C., Invertibility and weak continuity of the determinant for the modelling of cavitation and fracture in nonlinear elasticity. Arch. Ration. Mech. Anal. 197 (2010) 619655. Google Scholar
V.V. Jikov, S.M. Kozlov and O.A. Oleinik, Homogenization of differential operators and integral functionals. Springer-Verlag (1994).
U. Krengel, Ergodic theorems, vol. 6 of De Gruyter Studies in Mathematics. De Gruyter (1985).
G.C. Papanicolaou and S.R.S. Varadhan, Boundary value problems with rapidly oscillating random coefficients, in Proc. Colloq. on Random Fields: Rigorous Results in Statistical Mechanics and Quantum Field Theory (1979). In vol. 10 of Colloquia Mathematica Societatis Janos Bolyai, edited by J. Fritz, J.L. Lebaritz and D. Szasz. North-Holland (1981) 835–873.
A.N. Shiryaev, Probability, vol. 95 of Graduate Texts in Mathematics. Springer (1984).
Tempel’man, A.A., Ergodic theorems for general dynamical systems. Trudy Moskov. Mat. Obsc. 26 (1972) 94132. Google Scholar
Yurinskii, V.V., Averaging of symmetric diffusion in random medium. Sibirskii Mat. Zh. 27 (1986) 167180. Google Scholar