No CrossRef data available.
Published online by Cambridge University Press: 25 September 2008
In this work, we consider dynamic frictionless contact with adhesion between a viscoelastic body of the Kelvin-Voigt type and a stationary rigid obstacle, based on the Signorini's contact conditions. Including the adhesion processes modeled by the bonding field, a new version of energy function is defined. We use the energy function to derive a new form of energy balance which is supported by numerical results. Employing the time-discretization, we establish a numerical formulation and investigate the convergence of numerical trajectories. The fully discrete approximation which satisfies the complementarity conditions is computed by using the nonsmooth Newton's method with the Kanzow-Kleinmichel function. Numerical simulations of a viscoelastic beam clamped at two ends are presented.