Skip to main content Accessibility help
×
Home
Hostname: page-component-6f6fcd54b-tmjz7 Total loading time: 0.233 Render date: 2021-05-12T03:39:30.856Z Has data issue: true Feature Flags: {}

Mathematical analysis and numerical simulation of a Reynolds-Koiter model for the elastohydrodynamic journal-bearing device

Published online by Cambridge University Press:  15 May 2002

Iñigo Arregui
Affiliation:
Departamento de Matemáticas, Facultad de Informática, University of La Coruña, Campus de Elviña, s/n, 15071 La Coruña, Spain. arregui@udc.es. suceve@udc.es. carlosv@udc.es.
J. Jesús Cendán
Affiliation:
Departamento de Matemáticas, Facultad de Informática, University of La Coruña, Campus de Elviña, s/n, 15071 La Coruña, Spain. arregui@udc.es. suceve@udc.es. carlosv@udc.es.
Carlos Vázquez
Affiliation:
Departamento de Matemáticas, Facultad de Informática, University of La Coruña, Campus de Elviña, s/n, 15071 La Coruña, Spain. arregui@udc.es. suceve@udc.es. carlosv@udc.es.
Get access

Abstract

The aim of this work is to deduce the existence of solution of a coupled problem arising in elastohydrodynamic lubrication. The lubricant pressure and concentration are modelled by Reynolds equation, jointly with the free-boundary Elrod-Adams model in order to take into account cavitation phenomena. The bearing deformation is solution of Koiter model for thin shells. The existence of solution to the variational problem presents some difficulties: the coupled character of the equations, the nonlinear multivalued operator associated to cavitation and the fact of writing the elastic and hydrodynamic equations on two different domains. In a first step, we regularize the Heaviside operator. Additional difficulty related to the different domains is circumvented by means of prolongation and restriction operators, arriving to a regularized coupled problem. This one is decoupled into elastic and hydrodynamic parts, and we prove the existence of a fixed point for the global operator. Estimations obtained for the regularized problem allow us to prove the existence of solution to the original one. Finally, a numerical method is proposed in order to simulate a real journal-bearing device and illustrate the qualitative and quantitative properties of the solution.

Type
Research Article
Copyright
© EDP Sciences, SMAI, 2002

Access options

Get access to the full version of this content by using one of the access options below.

References

S. Alvarez, Problemas de frontera libre en teoría de lubricación. Ph.D. thesis, Universidad Complutense de Madrid (1986).
Arregui, I. and Vázquez, C., Finite element solution of a Reynolds-Koiter coupled problem for the elastic journal bearing. Comput. Methods Appl. Mech. Engrg. 190 (2001) 2051-2062. CrossRef
Bayada, G. and Chambat, M., The transition between the Stokes equation and the Reynolds equation: A mathematical proof. Appl. Math. Optim. 14 (1986) 73-93. CrossRef
Bayada, G. and Chambat, M., Sur quelques modélisations de la zone de cavitation en lubrification hydrodynamique. J. Theoret. Appl. Mech. 5 (1986) 703-729.
Bayada, G., Chambat, M. and Vázquez, C., Characteristics method for the formulation and computation of a free boundary cavitation problem. J. Comput. Appl. Math. 98 (1998) 191-212. CrossRef
Bayada, G., Durany, J. and Vázquez, C., Existence of solution for a lubrication problem in elastic journal bearing devices with thin bearing. Math. Methods Appl. Sci. 18 (1995) 255-266. CrossRef
Bernadou, M. and Ciarlet, P.G., Sur l'ellipiticité du modèle linéaire de coques de W.T. Koiter. Lecture Notes in Appl. Sci. Engrg. 34 (1976) 89-136.
Bernadou, M., Ciarlet, P.G. and Miara, B., Existence theorems for two-dimensional linear shell theories. J. Elasticity 34 (1992) 645-667.
H. Brézis, Analyse fonctionnelle. Masson, Paris (1983).
A. Cameron, Basic lubrication theory. Ellis Horwood, West Sussex (1981).
Ph. Destuynder, Modélisation des coques minces élastiques. Masson, Paris (1990).
Ph. Destuynder, M. Salaün, A mixed finite element for shell model with free edge boundary conditions. Part I: The mixed variational formulation. Comput. Methods Appl. Mech. Engrg. 120 (1995) 195-217. CrossRef
Ph. Destuynder, M. Salaün, A mixed finite element for shell model with free edge boundary conditions. Part II: The numerical scheme. Comput. Methods Appl. Mech. Engrg. 120 (1995) 219-242. CrossRef
Durany, J., García, G. and Vázquez, C., An elastohydrodynamic coupled problem between a piezoviscous Reynolds equation and a hinged plate model. RAIRO Modél. Math. Anal. Numér. 31 (1997) 495-516. CrossRef
Durany, J., García, G. and Vázquez, C., Simulation of a lubricated Hertzian contact problem under imposed load. Finite Elem. Anal. Des. 38 (2002) 645-658. CrossRef
V. Girault and P.A. Raviart, Finite element aproximation of the Navier-Stokes equations. Lecture Notes in Math. 749, Springer (1997).
Hughes, T.G., Elcoate, C.D. and Evans, H.P., A novel method for integrating first- and second-order differential equations in elastohydrodynamic lubrication for the solution of smooth isotermal, line contact problems. Internat. J. Numer. Methods Engrg. 44 (1999) 1099-1113. 3.0.CO;2-7>CrossRef
D. Kinderlehrer and G. Stampacchia, An introduction to variational inequalities and their applications. SIAM, Philadelphia (2000).
Verstappen, R., A simple numerical algorithm for elastohydrodynamic lubrication, based on a dynamic variation principle. J. Comput. Phys. 97 (1991) 460-488. CrossRef
Wu, S.R., A penalty formulation and numerical approximation of the Reynolds-Hertz problem of elastohydrodynamic lubrication. Internat. J. Engrg. Sci. 24 (1986) 1001-1013. CrossRef
Wu, S.R. and Oden, J.T., A note on applications of adaptive finite elements to elastohydrodynamic lubrication problems. Comm. Appl. Numer. Methods 3 (1987) 485-494. CrossRef

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Mathematical analysis and numerical simulation of a Reynolds-Koiter model for the elastohydrodynamic journal-bearing device
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Mathematical analysis and numerical simulation of a Reynolds-Koiter model for the elastohydrodynamic journal-bearing device
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Mathematical analysis and numerical simulation of a Reynolds-Koiter model for the elastohydrodynamic journal-bearing device
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *